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Abstract —Theoretical analysis of the dynamics of evolutionary algorithms is believed to be very important to understand the 

search behavior of evolutionary algorithms and to develop more efficient algorithms. In this paper we investigate the dynamics of 

a canonical Differential Evolution (DE) algorithm with DE/rand/1 type mutation and binomial crossover. Differential Evolution 

(DE) is well-known as a simple and efficient algorithm for global optimization over continuous spaces. Since its inception in 

1995, DE has been finding many important applications in real-world optimization problems from diverse domains of science and 

engineering. The paper proposes a simple mathematical model of the underlying evolutionary dynamics of a one-dimensional DE-

population. The model shows that the fundamental dynamics of each search-agent (parameter vector) in DE employs the gradient-

descent type search strategy (although it uses no analytical expression for the gradient itself), with a learning rate parameter that 

depends on control parameters like scale factor F and crossover rate CR of DE. The stability and convergence-behavior of the 

proposed dynamics is analyzed in the light of Lyapunov’s stability theorems very near to the islolated equilibrium points during 

the final stages of the search. Empirical studies over simple objective functions are conducted in order to validate the theoretical 

analysis.  

Keywords: Differential Evolution, Numerical Optimization, Gradient Decent Search, Asymptotic stability,  

 

 

1. Introduction 
 
 

In Artificial Intelligence (AI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic 

population-based metaheuristic optimization algorithm. An EA uses some mechanisms inspired by biological 

evolution: reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem 

play the role of individuals in a population, and the objective function (also known as cost function or fitness 

function in literature) determines the environment within which the solutions "live". Evolution of the population 

then takes place after the repeated application of the above operators. Theoretical analysis of evolutionary 

algorithms has received increasing attention in the recent years [1]. A few examples of interesting topics are, among 

many others, convergence analysis [2, 3], dynamics of evolution strategies [4], genetic algorithms [5, 6], and 

analysis of average computational time [7]. However, the dynamics of EAs during optimization and the roles of each 

genetic operator are still unclear and stand as a significant research problem at its own right. The analysis of 

dynamics of EAs is very helpful not only to understand working mechanism of EAs [8] but also to improve 

                                                 
 



performance of EAs and to propose new algorithms [9] because the solution of an optimizer is the result of the 

dynamics of EAs. Recently the convergence and stability of another state-of-the-art real parameter optimization 

technique called Particle Swarm Optimization (PSO) [10] has been undertaken by Trelea [11], Poli et al. and 

Kadirkamanathan et al. [12]. In [12] the authors have used the Lyapunov stability theorems to judge the stability and 

convergence of the search-agents (called particles) in PSO. 

 
Since its inception in 1995, a good volume of research has been undertaken in order to improve the performance of 

the DE algorithm over complex and multi-modal fitness landscapes. There exists a plethora of works concerning the 

empirical study of parameter selection and tuning process in DE [13-18] and its application to optimization 

problems [19, 20]. Little research has, however, been undertaken to model the underlined search dynamics of DE, 

which would enable us to understand how and why DE manages to find the optima of many difficult numerical 

functions so fast. Some significant work in this direction was reported in [21, 22, and 13] by Zaharie, where she 

theoretically analyzed the influence of the variation operators and their parameters on the expected population 

variance. Zaharie [21] showed that the expected population variance (after applying mutation and crossover or 

recombination) of DE is greater than that of the ES algorithm analyzed in [23]. This finding could explain to some 

extent the excellent performance of DE on certain test functions. The works of Zaharie [21] however did not focus 

on modeling DE as a dynamical system and analyzing its stability and convergence properties from there. Neither 

have they accounted for the control parameters that govern the final convergence of all the DE vectors to an isolated 

optimum. The study undertaken in this paper, attempts to make a humble contribution in these contexts.  

  

In this paper, we provide a simple mathematical model of DE/rand/1/bin scheme (which is the most popular variant 

of DE family [19]). Each parameter vector is modeled as a search-agent moving under the directives of the DE 

algorithm, over the fitness landscape in continuous time searching for the optima. The survival-of-the-fittest type 

selection mechanism in DE has been modeled with the unit step function and then approximated using the 

continuous logistic function in order to apply standard calculus techniques for further analysis. Our model attempts 

to find out an expected velocity of each parameter vector towards the optimum over successive time-steps. It also 

tries to relate the search mechanism of DE with that of the classical gradient descent search technique [24, 25]. A 

few earlier attempts to hybridize DE and GA with the gradient descent techniques, can be found in [26, 27]. Our 

model, however, indicates that the fundamental equation governing the expected velocity of the search agents over a 

continuous fitness landscape in DE has itself got a striking resemblance with that of the steepest descent search. The 

term analogous to the learning rate in steepest descent, for DE, becomes a function of control parameters like F and 

CR. Our analysis indicates that DE employs some kind of estimation of the gradient (not any analytical expression 

of the gradient itself though) in order to direct its search towards the optima. Based on the proposed model, the 

stability and convergence of the DE-vectors in a small neighborhood centered on an isolated equilibrium point, has 

been investigated with the Lyapunov stability theorems [28, 29]. The Lyapunov’s theorems are widely used in 

nonlinear system analysis to determine the necessary conditions for stability of a dynamical system. The theoretical 

results, presented in this context, show that the crossover rate CR mainly governs the time taken by a single search-

agent to converge to an arbitrarily small neighborhood around the optimum. Future works may consider some 



special tuning mechanisms for CR that facilitate quick convergence to an equilibrium (which is usually an optimum 

during the final stages of search). Simple experimental results have also been provided to support the theoretical 

claims made in the paper. In the appendix A.2 we provide an equivalent mathematical model for the DE/current-to-

rand/1 scheme which uses arithmetic recombination operator so that the trial vectors may remain rotationally 

invariant [19]. 

 

2. The Classical DE Algorithm – an Outline 

 

Like any other evolutionary algorithm, DE starts with a population of NP D-dimensional parameter vectors 

representing the candidate solutions. We shall denote subsequent generations in DE by max...,1,0 GG = . Since the 

parameter vectors are likely to be changed over different generations, we may adopt the following notation for 

representing the i-th vector of the population at the current generation as: 

                                              ].,.....,,,[ ,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

                                                          (1) 

For each search-variable of the problem, there may be a user-specified range within which value of the variable 

should lie for more accurate search results at less computational cost. The initial population (at 0=G ) should cover 

the entire search space as much as possible by uniformly randomizing individuals within the search space 

constrained by the prescribed minimum and maximum 

bounds: },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

. Hence we may initialize the j-th 

component of the i-th vector as, 

                      )()1,0( min,max,,min,0,, jjjijij xxrandxx −⋅+= ,                                                         (2)                                                   

where )1,0(, jirand is a uniformly distributed random number lying between 0 and 1 and is instantiated 

independently for each component of each vector. Following steps are taken next: mutation, crossover, and 

selection, which are explained in the following subsections. 

 

a) Mutation:   

After initialization, DE creates a donor vector GiV ,

�

 corresponding to each population member or target 

vector GiX ,

�

in the current generation through mutation.  It is the method of creating this donor vector, which 

differentiates between the various DE schemes. Five most frequently referred mutation strategies implemented in the 

public-domain DE codes available online at http://www.icsi.berkeley.edu/~storn/code.html are listed below: 

                 “DE/rand/1”: ).(
,,,,

321 GrGrGrGi iii XXFXV
����

−⋅+=                                                                                         (3) 

                 “DE/best/1”: ).(
,,,,

21 GrGrGbestGi ii XXFXV
����

−⋅+=                                                                                      (4) 

   “DE/target-to-best/1”:  ).()(
,,,,,,

21 GrGrGiGbestGiGi ii XXFXXFXV
������

−⋅+−⋅+=                                                      (5) 



           “DE/best/2”:  ).()(
,,,,,,

4321 GrGrGrGrGbestGi iiii XXFXXFXV
������

−⋅+−⋅+=                                                          (6) 

            “DE/rand/2”: ).()(
,,,,,,

54321 GrGrGrGrGrGi iiiii XXFXXFXV
������

−⋅+−⋅+=                                                           (7) 

The indices ir1 , ir2 , ir3 , ir4 , and ir5 are mutually exclusive integers randomly chosen from the range [1, NP], and all are 

different from the index i. These indices are randomly generated once for each donor vector. The scaling factor F is 

a positive control parameter for scaling the difference vectors. GbestX ,

�

 is the best individual vector with the best 

fitness (i.e. lowest objective function value for minimization problem) in the population at generation G. The general 

convention used for naming the various mutation strategies is DE/x/y/z, where DE stands for Differential Evolution, 

x represents a string denoting the vector to be perturbed and y is the number of difference vectors considered for 

perturbation of x. z stands for the type of crossover being used (exp: exponential; bin: binomial). The following 

section discusses the crossover step in DE. 

 

b) Crossover:        

     

To increase the potential diversity of the population, a crossover operation comes into play after generating the 

donor vector through mutation. The DE family of algorithms can use two kinds of crossover schemes - exponential 

and binomial [1-3]. The donor vector exchanges its components with the target vector GiX ,

�

 under this operation to 

form the trial vector ],...,,,[ ,,,,3,,2,,1, GiDGiGiGiGi uuuuU =
�

. In exponential crossover, we first choose an integer n 

randomly among the numbers ],1[ D . This integer acts as a starting point in the target vector, from where the 

crossover or exchange of components with the donor vector starts. We also choose another integer L from the 

interval ],1[ D . L denotes the number of components; the donor vector actually contributes to the target. After a 

choice of n and L the trial vector:                                               

                   =Giju ,,
    Gijv ,, ,    for 

DDD
Lnnnj 1,...,1, +−+=  

                                     
Gijx ,,

,  for all other ],1[ Dj ∈                                                                                                   (8)                

where the angular brackets 
D

 denote a modulo function with modulus D. The integer L is drawn from ],1[ D  

according to the following lines of pseudo code.                                             

 

L = 0; 

DO 

{ 

     L=L+1; 

} WHILE (( ))1,0(( Crrand < AND ( DL < )) ; 

 



Hence in effect, probability (L ≥ υ) = (Cr)
 υ-1

 for any υ > 0. ‘Cr’ is called crossover rate and it appears as a control 

parameter of DE just like F. For each donor vector, a new set of n and L must be chosen randomly as shown above.  

 

On the other hand, binomial crossover is performed on each of the D variables whenever a randomly picked number 

between 0 and 1 is less than or equal to the Cr value. In this case the number of parameters inherited from the 

mutant has a (nearly) binomial distribution. The scheme may be outlined as, 

                     Giju ,,   =       
Gij

v ,,  ,       if ( Crrand ji ≤)1,0(, or )randjj =  

                                           Gijx ,, ,     otherwise                                                                                                           (9)              

where )1,0(, jirand ]1,0[∈ is a uniformly distributed random number, which is called a new for each j-th component 

of the i-th parameter vector. ],....,2,1[ Djrand ∈ is a randomly chosen index, which ensures that GiU ,

�

gets at least one 

component from GiV ,

�

. 

 

Fig. 1: Change of the trial vectors generated through the crossover operation described in equation (9) due to rotation of the 

coordinate system 

 

The crossover operation described in equation (9) is basically a discrete recombination [3]. Figure 1 illustrates a 

two-dimensional example of recombining the parameters of two vectors GiX ,

�

and GiV ,

�

, according to this crossover 

operator, where the potential trial vectors are generated at the corners of a rectangle. As can be seen from Figure 1, 

discrete recombination is a rotationally variant operation. Rotation transforms the coordinates of both vectors and 

thus changes the shape of rectangle as shown in Figure 1. Consequently, the potential location of the trial vector 

   2x  
 

2'x  

  GiU ,_2

�

 GiV ,

�

 

   1x  

GiX ,

�

 

GiU ,_1

�

 

1'x  GiU ,_4

�

 

GiU ,_3

�



moves from the possible set ( GiU ,_1

�

, GiU ,_2

�

) to ( GiU ,_3

�

, GiU ,_4

�

). To overcome this limitation, a new trial vector 

generation strategy ‘DE/current-to-rand/1’ is proposed in [18], which replaces the crossover operator prescribed in 

equation (9) with the rotationally invariant arithmetic crossover operator to generate the trial vector GiU ,

�

 by linearly 

combining the target vector GiX ,

�

and the corresponding donor vector GiV ,

�

as follows: 

                                
).( ,,,, GiGiGiGi XVKXU

����

−⋅+=
                                                 

Now incorporating equation (3) in (10) we have: 

                   
).)(( ,,,,,, 321 GiGrGrGrGiGi XXXFXKXU

������

−−⋅+⋅+=
 

which further simplifies to: 

                   ),()( ,,
/

,,,, 321 GrGrGiGrGiGi XXFXXKXU
������

−⋅+−⋅+=                                                                  (10) 

where K is the combination coefficient, which has been shown [18] to be effective when it is chosen with a uniform 

random distribution from [0, 1] and FKF ./ = is a new constant here. 

 

c) Selection:   

     

To keep the population size constant over subsequent generations, the next step of the algorithm calls for selection. 

This operation determines which one of the target and the trial vector survives to the next generation i.e. 

at 1+= GG . The selection operation may be outlined as:  

                            1, +GiX
�

,,GiU
�

=        if  )()( ,, GiGi XfUf
��

≤  

                                        ,,GiX
�

=       if  )()( ,, GiGi XfUf
��

>                                                                                    (11)   

where )(Xf
�

is the function to be minimized. So if the new trial vector yields a lower value of the objective 

function, it replaces the corresponding target vector in the next generation; otherwise the target is retained in the 

population. Hence the population either gets better (w.r.t. the minimization of the objective function) or remains 

constant, but never deteriorates. The complete pseudo code has been provided below: 

 

Pseudo-code for the DE algorithm family 

 

 Step 1. Set the generation number 0=G and randomly initialize a population of NP  

individuals },......,{ ,,1 GNPGG XXP
��

= with ],.....,,,[ ,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

 and each individual 

uniformly distributed in the range ],[ maxmin XX
��

,  

          where },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

with ],....,2,1[ NPi = . 

Step   2. WHILE stopping criterion is not satisfied 

             DO 



               FOR 1=i to NP                       //do for each individual sequentially 

                 

               Step 2.1 Mutation Step 

                     Generate a donor vector },.......,{ ,,,,1, GiDGiGi vvV =
�

corresponding to the  i-th target vector GiX ,

�

 via 

one of the different mutation schemes of DE (equations (3) to (7)). 

 

                Step 2.2 Crossover Step 

              Generate a trial vector },.......,{ ,,,,1, GiDGiGi uuU =
�

 for the i-th target     vector    GiX ,

�

through 

binomial crossover (equation (9)) or exponential crossover (equation (8)) or through the arithmetic 

crossover (equation (10)).    

             

               Step 2.3 Selection Step 

                     Evaluate the trial vector GiU ,

�

 

       IF )()( ,, GiGi XfUf
��

≤ , THEN GiGi UX ,1,

��

=+ , )()( ,1, GiGi UfXf
��

=+  

           IF )()( ,, GbestGi XfUf
��

< , THEN GiGbest UX ,,

��

= , )()( ,, GiGbest UfXf
��

=  

           END IF 

       END IF 

       ELSE GiGi XX ,1,

��

=+ , )()( ,1, GiGi XfXf
��

=+  

              END FOR 

            Step 2.4 Increase the Generation Count 1+= GG  

       

      END WHILE                   

 

3. The Mathematical Model of the Population-Dynamics in DE 
 

3.1 Assumptions 

 

Suppose ℜ→ℜ:)(xf be the function of a single variable x and is to be optimized using the DE Algorithm. Let 

},........,{ 21 NPxxx  be a set of trial solutions forming the population subjected to DE search where NP  denotes 

the population size. In order to validate our analysis, we make certain assumptions, which are listed below:   

 

i) The objective function )(xf is assumed to be of class 2C  (please note that a function f is said to be of 

class kC  if the derivatives )(21 ,...,, kfff  exist and are continuous [30]).  Also let )(xf be Lipschitz 

continuous [31], that is given any two points x and y ℜ∈ , f satisfies the Lipschitz condition 



yxLyfxf −≤− .)()( with the value of Lipschitz constant 1≤L in the region of the fitness landscape 

(i.e. )(xf is actually a contraction mapping), where our analysis applies. Moreover the objective 

function is unimodal in the region of interest. 

 

Explanation:  Goal of our work is to analyze stability of DE population during the final stages of the 

search. To study stability and convergence, we assume that already due to DE-type mutation and 

crossover operations, the population have crowded into a small neighborhood surrounding an optimum. 

The above hypotheses of regularity made on the objective function indicate that the value of the gradient 

becomes small under such conditions. This facilitates the analysis as will be evident from appendix A.1. 

 

ii) The population of NP  trial solutions is limited within a small region i.e. individual trial solutions are 

located very close to each other. According to [21] and [32], this is usually the case during the later 

stages of the search, when the parameter vectors concentrate in a compact cluster around the global 

optimum, and especially when the scaling factor F is set at 0.5. Please note that the justification for this 

assumption has been provided in appendix A.1. 

       

iii) Dynamics is modeled assuming the vectors as search-agents moving in continuous time. 

 

Explanation: A population member (trial solution) may change its position with time, which in turn may 

change its objective function value. Computer simulation of the algorithm, however, proceeds through 

discrete generations. Certain amount of processor time is elapsed between two successive generations. Thus, 

in the virtual world of simulations, a solution can change its position only at certain discrete time instants. 

This change of position is ideally instantaneous. In between two successive generations it remains practically 

immobile. Without losing generality, the time between two successive generations may be defined as unit 

time for the following derivation. But we have assumed continuous time to model it as a dynamic physical 

system, where it is not possible to have instantaneous position change. Hence, we assume within two 

successive generations the position shifts continuously and linearly. In practice, time between two successive 

generations i.e. computational time of generation is very small. This ensures that the approximation is fairly 

good.  

           Figure 2 depicts a favorable portion of a one- dimensional arbitrary objective function for our analysis. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: A DE population dispersed on a one-dimensional arbitrary fitness landscape 

 

3.2 Modeling Different Steps of DE 

 

Let mx  be the m -th individual of the population, where NPm ,...,2,1= . During an generation of DE, it undergoes 

three steps: mutation, crossover, and selection. Each step is modeled individually and finally they are merged to get 

a generalized expression for the expectation value of the trial vector formed this way. In the following analysis, 

upper case letter denotes random variables. 

 

Three trial solutions are chosen at random from the population. Let 321 ,, rrr XXX  be three trial solutions (random 

variables) picked up randomly from population.  Here, we assume trial solutions are drawn with replacement. i. e. 

each trial solution chosen at a particular draw is returned to the population before next draw. This assumption makes 

321 ,, rrr XXX  independent of each other. 

This means )()|( lrikrjlri xXPxXxXP ====  

            )()()( krjlrikrjlri xXPxXPxXxXP ====∩=⇒  

Where, 3,2,1, =ji  and NPlk )1(1, =   and  ji ≠   

Difference of 32 , rr XX  is scaled by a factor F  and then 1rX  is added with the scaled difference. Let mV  be the 

generated donor vector. 

                 )( 321 rrrm XXFXV −+=∴                                                                             

For the one-dimensional analysis we omit the restriction that at least one component of the trial vector must come 

from the donor. Hence in this case CR equals the true probability of the event that mm VU = . Equipped with these 

assumptions we may assert the following theorems:  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Probability density function of r 

 

Theorem 1: The expected value of a trial vector mU  corresponding to the target vector mx is given by  

                                       avmm CRxxCRUE +−= )1()(                                                                                   (12) 

and the expected value of 
2

mU  is then given by, 

                          
2222

)()12()1()( avmm CRxxVarFCRxCRUE +++−=                                                       (13)  

 

where avx is the mean of the population i.e. ∑
=

=
NP

i

iav x
NP

x
1

1
and )(xVar is the variance of the target population. 

 

Proof:  From Figure 3, probability of the event, CRr ≤ =≤= )( CRrP  Area of the shaded region.                                                                 

                                                                                      CRCR =×= 1  

Now, CRr ≤  and CRr >  are mutually exclusive and exhaustive events. 

CRCRrPCRrP −=≤−=>∴ 1)(1)(               

)}]({))}()()((){([

)()(

1 1 1

321 kji

NP

i

NP

j

NP

k

krjrir

mm

xxFxxXxXxXCRrP

xCRrPUE

−+=∩=∩=∩≤

+>=∴

∑∑∑
= = =

 

Now, we have assumed that mutation and crossover are independent of each other i.e. r is independent 

of 321 ,, rrr XXX . 

 
))()()(()(

))()()((){(

321

321

krjrir

krjrir

xXxXxXPCRrP

xXxXxXCRrP

=∩=∩=≤=

=∩=∩=∩≤
 

)]([)}.()(){()()()(

1 1 1

321 kji

NP

i

NP

j

NP

k

krjrirmm xxFxxXxXxXPCRrPxCRrPUE −+=∩=∩=≤+>=∴ ∑∑∑
= = =

 



321 ,, rrr XXX  are independent random variables.    

 Hence, )()()()}()(){( 321321 krjrirkrjrir xXPxXPxXPxXxXxXP =====∩=∩=  

)]([)()()()()()(

1 1 1

321 kji

NP

i

NP

j

NP

k

krjrirmm xxFxxXPxXPxXPCRrPxCRrPUE −+===≤+>=∴ ∑∑∑
= = =

 

Now,
NP

xXPxXPxXP krjrir

1
)()()( 321 ======  

)]([
1

)()()(
1 1 1

3 kji

NP

i

NP

j

NP

k

mm xxFx
NP

CRrPxCRrPUE −+≤+>=∴ ∑∑∑
= = =

 

 

∑∑∑
= = =

−++−=∴
NP

i

NP

j

NP

k

kjimm xxFx
NP

CRxCRUE
1 1 1

3
)]([

1
)1()(  

∑∑∑ ∑∑∑∑∑∑
= = = = = == = =

−++−=⇒
NP

i

NP

j

NP

k

NP

i

NP

j

NP

k

k

NP

i

NP

j

NP

k

jimm xxFx
NP

CRxCRUE

1 1 1 1 1 11 1 1

3
)]([

1
)1()(  

∑∑∑
= = =

+−=⇒
NP

i

NP

j

NP

k

imm x
NP

CRxCRUE

1 1 1
3

][
1

)1()(  

∑
=

+−=⇒
NP

i

imm x
NP

CRxCRUE

1

1
)1()(  

avmm CRxxCRUE +−=∴ )1()(  

Now, similar to the previous one,  

])}({))}()()((){([)()( 2

1 1 1

321

22

kji

NP

i

NP

j

NP

k

krjrirmm xxFxxXxXxXCRrPxCRrPUE −+=∩=∩=∩≤+>=∴ ∑∑∑
= = =

 

Proceeding in the same manner, 

∑ ∑ ∑
= = =

−++−=∴
NP

i

NP

j

NP

k

kjimm xxFx
NP

CRxCRUE
1 1 1

2

3

22
)}({

1
)1()(  

])
1

(2
1

)12[()1()( 2

1

2

1

2222 ∑∑
==

−++−=⇒
NP

i

i

NP

i

imm x
NP

Fx
NP

FCRxCRUE  

∑∑∑ ∑∑∑
= = = = = =

=
NP

i

NP

j

NP

k

NP

i

NP

j

NP

k

kiji xxxx
1 1 1 1 1 1

∵  and ∑∑∑ ∑∑∑∑∑∑
= = = = = == = =

==
NP

i

NP

j

NP

k

NP

i

NP

j

NP

k

kj

NP

i

NP

j

NP

k

i xxx
1 1 1 1 1 1

22

1 1 1

2
∵  

also   

2

11 1 1 1 1









== ∑∑∑∑ ∑ ∑

== = = = =

NP

i

i

NP

i

NP

j

NP

k

NP

i

NP

j

jiji xNPxxNPxx∵  



and 

2

11 1 11 1 11 1 1









=== ∑∑∑∑∑∑∑∑∑∑

== = == = == = =

NP

i

i

NP

i

NP

j

NP

k

ik

NP

i

NP

j

NP

k

kj

NP

i

NP

j

NP

k

ji xNPxxxxxx∵ , we have, 

∑∑∑
===

+−++−=
NP

i

i

NP

i

i

NP

i

imm x
NP

CRx
NP

x
NP

FCRxCRUE
1

22

11

2222
)

1
(])

1
(

1
)[12()1()(  

2222
)()12()1()( avmm CRxxVarFCRxCRUE +++−=⇒                                                    

Where, 2

11

2
)

1
(

1
)( ∑∑

==

−=
NP

i

i

NP

i

i x
NP

x
NP

xVar  and ∑
=

=
NP

i

iav x
NP

x
1

1
, and hence the proof. 

 

Remark: Note that if 0=CR , mm xUE =)( and
22

)( mm xUE = , i.e. the expected value of the trial vector 

remains same as that of the target vector. This is intuitively simple as for 0=CR , the trial vector can only inherit 

from the target but nothing from the donor/mutant vector. Again if 1=CR , avm xUE =)( and 

222
)().12()( avm xxVarFUE ++= . Clearly if 10 << CR , the expected value of the trial vector lies in 

between mx and avx . 

 

Theorem 2: If the DE population may be modeled as a continuous-time, dynamic system, then the expectation value 

of the velocity of an individual point on the fitness landscape may be given as: 
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Proof: Let us assume that mutation and crossover occur in unit time to give rise to off offspring.  In selection mx  is 

replaced by mU if the objective function value for mUx =  is less than or equal to that for mxx = .This decision-

making is performed using Heaviside’s unit step function [33] , which is defined as follows: 

                                     1)( =pu    if   0≥p  

                                               0=   otherwise.                                                                                            

Now, let at time t  position of m  th trial solution be mx  and at tt ∆+  it is changed to mm xx ∆+  
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Now, we have to replace unit step function by logistic function to carry out the analysis. Ideally,  
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Let us take a moderate value of k for analysis. 
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[neglecting higher order terms] 
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Again assuming p to be very small and neglecting higher order terms in expansion of 
1)

2
1( −−

kp
 we obtain,  
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Fig. 4: The unit step and the logistic functions. 

 

Now, the population has a small divergence. mm xU −∴  is not very large ( Explained in Appendix A1) and as 

dt

dxm
is either 0 or mm xU − . This ensures 

dt

dxm
 is small. 



Also we have assumed that fitness landscape has a moderate slope i.e. )(' mxf  is also small, which in turn suggests 

that 
dt

dx
xf m

m )('  is small. Thus from equations (14) and (15) we get, 
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Now, ))((
4
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k
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From equation (17) we get, 
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Now mU  is a random variable. 
dt

dxm∴ , which is a function of mU  , is also a random variable. 

Let us try to compute its expected value. 
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Substituting values of )(),(
2

mm UEUE from equation (12) and (13) to equation (19) we get, 
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  and hence the proof. 

Theorem 4: Let avx denote the centroid (mean of all points) of the current population and ∑
=

=
NP

m

mav x
NP

x
1

1
. Also 

let us denote =−= mavm xxε deviation of individual from average. Then expected velocity of the centroid of the 

population may be given by, 
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Let us denote =−= mavm xxε deviation of individual from average. 
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Where, ∑
=
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NP

m

mav xf
NP

f
1

'' )(
1

average of the gradients for trial solution points on fitness landscape. This 

completes the proof.   

 

Remark: From theorem 3, we may write,  
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m xf
dt

dx
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                                                                                (22)                                                                                                                            

Where, })()()12{(
8
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mavDE xxxVarFCR
k

−++−=α   and  )(
2

1
mavDE xxCR −=β   

The classical gradient descent search algorithm is given by the following dynamics (continuous) in single dimension 

[25]: 

                                          βα
θ

+−= G
dt

d
.                                                                                                            (23) 

where α  is the learning rate and β   is the momentum. 

 



The resemblance of equations (22) and (23) is not difficult to recognize and it suggests that, the dynamics of actual 

DE uses some kind of estimation for the gradient of the objective function. In equation (20), )(' mDE xfα−  term 

on the R.H.S. is responsible for moving along the direction of the negative gradient, whereas DEβ  represents a 

component of velocity of a trial solution towards the mean vector (center of mass) of the population. 

Evidently very near to an optimum, when 0)(' →mxf ,  
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E −=≈ β                                                                 (24) 

Clearly if the population converges towards the optimum, )( mav xx −  tends to zero  and 0)( →
dt

dx
E m

, thus once 

reaching the optimum, average velocity of the population members ceases to exist. Thus 0)( →xVar , 

0→− mav xx  and also 0→mε  and from (24) we get 0)( →
dt

dx
E m

 and 0)( →
dt

dx
E av

.             

 

4. Lyapunov Stability Analysis of the DE-Population  
 

In this section we analyze the stability of the population-dynamics represented by equation (3.16) using the concept 

of Lyapunov stability theorems [28]. We begin this treatment by explaining some basic concepts and their 

interpretations from the standard literature on nonlinear control theory [29, 28]. 

 

Definition 1  

A point exx
��

= is called an equilibrium state, if the dynamics of the system is given by  

   

))(( txf
dt

xd �
�

=  

becomes zero at exx
��

=  for any t i.e. 0))(( =txf e

�
. The equilibrium state is also called equilibrium (stable) point 

in D-dimensional hyperspace, when the state ex
�

 has D-components. 

Definition 2  

A scalar function )(xV
�

 is said to be positive definite with respect to the point ex
�

 in the region Kxx e ≤−
��

, if 

0)( >xV
�

 at all points of the region except at ex
�

where it is zero. 

Definition 3  

A scalar function )(xV
�

is said to be negative definite if )(xV
�

−  is positive definite. 



Definition 4  

    A dynamics ))(( txf
dt

xd �
�

=  is asymptotically stable at the equilibrium point ex
�

, if 

         a)   it is stable in the sense of Lyapunov, i.e., for any neighborhood ( )εS  surrounding ex
�

  ( ( )εS contains points 

x
�

 for which ε≤− exx
��

) where there is a region ( )δS ( )(δS contains points x
�

 for which 

δ≤− exx
��

), ε<δ , such that trajectories of the dynamics starting within ( )δS  do not leave ( )εS  as time 

∞→t  and  

         b)    the trajectory starting within ( )δS  converges to the origin as time t approaches infinity.     

 

The sufficient condition for stability of a dynamics can be obtained from the Lyapunov’s theorem, presented below. 

 

Lyapunov’s stability theorem [28, 34] 

Given a scalar function )(xV
�

 and some real number 0>ε , such that for all x
�

 in the region ε≤− exx
��

 the 

following conditions hold: 

1) 0)( =exV
�

 

2)  0)( >xV
�

for exx
��

≠ , i.e. )(xV
�

 is positive definite.   

3) )(xV
�

 has continuous first partial derivatives with respect to all components of x
�

. 

 Then the equilibrium state ex
�

 of the system ))(( txf
dt

xd �
�

=  is 

a) asymptotically stable if 0<
dt

dV
, i.e. 

dt

dV
 is negative definite, and 

                       b)  asymptotically stable in the large if  0<
dt

dV
 for exx

��
≠ , and in addition, ∞→)(xV

�
  as 

∞→− exx
��

. 

Remark: Lyapunov stability analysis is based on the idea that if the total energy in the system continually decreases, 

then the system will asymptotically reach the zero energy state associated with an equilibrium point of the system. A 

system is said to be asymptotically stable if all the states approach the equilibrium state with time. 

 

To study stability of DE algorithm we first model it as an autonomous control system. Here each population member 

mx  is a state variable of the control system. From equation (14) we get,  
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E −+−++−= , for NPm ,...,2,1= . 



Assuming the population to be concentrated into a small neighborhood around an optimum in a flatter portion of the 

function, we have 1)(' <<mxf . Hence the equation can be written as, 
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Actually (25) represents NP  number of simultaneous equations. Next, we represent them using matrix notation. 

From (25) we get, 

                          























































−

−

−

=





























NP

NP

x

x

x

NPNPNP

NPNPNP

NPNPNP

CR

dt

dx
E

dt

dx
E

dt

dx
E

....

....

....

....

1
1

.......
11

.....

.....

.....

.....

......

......

......

......

1
........1

11

1
.......

1
1

1

2

1

)(

.....

.....

)(

)(

2

1

2

1

                                          (26)                                            

The above matrix equation is of the form [ ]xA
dt

xd
E

�
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NPxxxx ],...,,[ 21=

�

 is the set of state 

variables and 
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We know that eigenvalues of system-matrix A  are the poles of the system. Eigenvalues are those values of λ  for 

which [ ] 0det =− AIλ is satisfied, where I is the identity matrix of order NP . 
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After doing simple algebraic operations on the rows of the determinant in LHS of (27) we get, 
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Clearly equation (28) is the characteristic equation of matrix A . From (28) we get the system eigenvalues as: 

.
2

,.....,
2

,
2

,0
CRCRCR

−−−=λ  

These values of λ  are the system poles. We observe that one of these eigenvalues is zero and the rest are negative.  

Since one eigenvalue is zero, the system is not asymptotically stable and must have a DC component in the output. 

In the following section, we investigate whether the system is stable in the sense of Lyapunov.  

 

Theorem 5: The system defined in equations (25) and (26) is stable in the sense of Lyapunov. 

 

Proof:   We are assuming the population is located very close to optima. Hence value of the gradient is negligibly 

small. So equation (25) holds true in such a region. 
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The condition for an equilibrium point is 0)( =
dt

dx
E m

, for NPm ...,2,1= [according to definition 1]. We 

consider the case where the DE population is confined within a small neighborhood of an isolated optimum and over 

the entire population value of the gradient is very small. In this case, the preferred equilibrium point should be the 

optimum itself. This ensures that with time there is no change in values of state variables i.e. positions of the 

population members after they hit the optimum. Now from equation (25), 
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1
, for NPi .2,1= . 

This is possible only if all of the state variables are equal in value i.e. eNP xxxx ==== ............21 , where ex  

is the equilibrium position. At this point we would like to mention that as the search progresses; the population-

members in DE get to the better portions of the search space or remain constant owing to its greedy selection 

strategy. In case of a smooth, unimodal fitness landscape, the solution vectors generally crowd into a small 

neighborhood surrounding the optimum. Thus during the later stages of search, the equilibrium point ex  basically is 

identical to the optimum, once reaching at which point, population members are expected not to change any further  



and thus this point should satisfy the condition NPxxx === ............21 as well. This section examines the stability 

of the solution vectors very near to such an optimum point of the search space. Figure 5 shows a fitness landscape 

and an equilibrium position at the optimum. Next, we define Lyapunov’s Energy function V as,  
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21 )(),,.......,(                                                                              (29) 

Clearly               0=V ,  if eNP xxxx ==== ............21  

                               0> , otherwise. 

 

 

 

 

                                                    

 

 

 

 

 

Fig 5: State variables along with equilibrium position. 

 

Energy function is always positive except the equilibrium, where it becomes zero. So, energy function is a positive 

definite with respect to equilibrium [from definition 2].  It is also to be noted that basically ))(( xVarNPV = .  

Differentiating equation (29) with respect to time we get, 
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From (25) we get , 
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Putting expectation values in (30),  
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From equation (30) it is evident that 




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

dt

dV
E  is 0 when eNP xxxx ==== ............21  and is negative 

otherwise. Hence 
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dt

dV
E  is a negative definite with respect to equilibrium point. Here V is positive definite and 


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
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

dt

dV
E is negative definite, satisfying Lyapunov’s stability theorem. We can infer that the system is stable in the 

sense of Lyapunov. 

 

Remark: Clearly  V  has continuous partial derivative. It can be noted that the population average or the center of 

the mass of the system does not change with time (as 0
1
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Already we have mentioned condition for equilibrium is eNP xxxx ==== ............21 , where ex the 

equilibrium position is. Now, if all population members are equal, then each of them equals to population average, 

i.e. avNP xxxx ==== ............21 . This leads to the conclusion ave xx ≡ . Initially, population was scattered 

within a small region around the optima. So, the average was also very close to the actual optima. Lyapunov’s 

function in this case is directly proportional to the population variance. With time the initially dispersed populations 

gather at the center of mass of system (which almost remains steady in the time interval), and eventually population 

variance diminishes to 0. This leads to convergence of system. Average velocity of m-th population member 

is )(
2

1
mav xxCR − . Average acceleration is 

dt

dx
CR

dt

dx

dt

dx
CR mmav

2

1
)(

2

1
−=−  (as of mass remains 

unchanged). So, acceleration is directly proportional to velocity and the negative sign signifies it acts in opposite 

direction. This characteristic of the system dynamics suggests that near the optima the algorithm acts as a 

mechanical damper, and average position acts as a stable attracter. The velocity of a population member gradually 

attenuates to zero by the damping force.  

 

Theorem 6: An estimate of the system time-constant can be 
CR

1
 

Proof:    Using equation (27), equation (29) can be written as  
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.                                                                                         (32) 

The term in the denominator of L.H.S of above expression is the expected or average value of time rate of change of 

energy function.  Let the process be carried out repeatedly for same initial conditions and parameter values and an 

average of energy function is calculated for the runs and the average of the energy function be denoted by V . 



Time rate of change of the average is also computed and let it be denoted as
dt

Vd
 .We assume that the runs of the 

algorithm are independent and probability associated with selecting a population member in any stage of the 

algorithm does not change with time i.e. the process is time invariant. In that case we may expect from equation (32) 
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where 0V is the initial value of energy function. We have seen that energy function decreases with time. We may 

define a time-constant for the system as the time interval in which the energy function reduces to
e

1
 part of its initial 

value. If we denote this time-constant byT , Putting 
e

V
V 0= and Tt =  in (31), we have time-

constant
CR

T
1

== . 

 

5. Experimental Results  
 

In this section we provide the phase plots (
dt

dx
v = versus x plots) for DE/rand/1/bin, which supports the theoretical 

results derived in the earlier section. A population of 11 vectors is taken to optimize the single dimensional sphere 

function
2)( xxf =  using the DE Algorithm. The vectors are randomly initialized in the interval (-5, 5). In Figure 6 

four phase-trajectories have been shown for the median vector (when the population is ranked according to the final 

fitness values of the vectors) over four independent runs (with different initial populations). These phase trajectories 

verifies our theoretical finding that near an optima, the expected velocity )(
dt

dx
E  of individual member of 

population gradually approaches zero. Experimental results suggest that the D.C component at the output of the 

system defined in equation (26) is actually zero, leading all the vectors to converge to the equilibrium point, which is 

identical to the optimum for a uni-modal function.  
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Fig. 6: Phase trajectory of the median order vector (in a population of size NP = 11) for 4 independent runs (with different seeds 

for the random number generator) for 
2)( xxf =  

 

Similarly, we construct phase trajectories for objective function
2

1)( x
exf

−−= .  New set of phase trajectories is 

shown in Figure 7. The vectors are randomly initialized in the interval (-5, 5). 
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Fig. 7: Phase trajectory of the median order vector (in a population of size NP = 11) for 4 independent runs (with different seeds 

for the random number generator) for 
2

1)( x
exf

−−=  

 

We have estimated time-constant of Lyapunov energy function in theorem 6. Now, according to equation (33) 

convergence time is inversely proportionate to crossover probability. In Figure 8 plots of time variations of 

Lyapunov’s energy function is provided for various crossover probabilities (objective function used 2)( xxf = ). 

From Figure 8 we observe as crossover probability increases convergence time gradually decreases. This matches 

with our theoretical finding of theorem 6. From Figure 8 we graphically determine time-constant for the energy 

function, which is the time in which Lyapunov energy function diminishes to e -th (approx 2.71) fraction of its 

initial value. In Table 1 below we make a comparison between convergence time measured from Figure 7 and found 

from equation (33). 
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Fig. 8: Convergence characteristics for various values of crossover probability. 

                            

Table 1 shows that the theoretically predicted convergence time-constant closely matches its experimentally found 

counterpart. This confirms the finding of theorem 6. 

 

Table 1: Comparison between calculated and experimental convergence time. 

 

 

 

 

 

 

 

 

 

 

6.  Conclusions 

 
Differential Evolution (DE) has been regarded as a competitive form of Evolutionary Algorithm for function 

optimization problems in recent years. In this article we provide a simple analysis of the evolutionary dynamics 

undertaken by each of the population members in DE/rand/1/bin, which appears as one of the most popular and 

widely used variant of the DE. We apply simple statistical and calculus-based methods in order to derive a 

dynamical model of the DE-population that undergoes mutation, binomial crossover and selection. The selection 

mechanism in DE has been modeled by the well-known unit step function, which was subsequently approximated by 

continuous logistic function. One important finding of our analysis is the similarity of the fundamental differential 

equation governing the expected velocity of a search-agent in DE with that of the classical gradient descent search 

with momentum. This suggests that DE uses a stochastic estimate of the gradient of the objective function (which 

was assumed to be continuous in our analysis in order to keep the mathematics less rigorous) in order to locate the 

optima of the function. It is due to the gradient descent type search strategy, that DE converges much faster than 

algorithms like GA or Particle Swarm Optimization (PSO) over unimodal benchmarks [35]. However, the actual 

algorithm does not take into account any analytical expression of the true function-gradient and due to the 

Convergence time 

(Expressed in number of generations) 

 

   Crossover probability              

 Measured graphically    Calculated theoretically 

0.55 2.4                   2.31 

0.65 2.1 1.94 

0.75 1.8 1.73 



randomness introduced by mutation and crossover operations into the dynamics of an individual, can escape 

trapping in local optima in many cases.  

 

Based on the mathematical model derived here, we also analyze the stability of a DE population, very near to an 

isolated optimum, which acts as the equilibrium point for the dynamics. Application of Lyapunov’s stability 

theorems reveals that the near-equilibrium behavior of a DE population is inherently stable and free from any kind 

of oscillatory behaviors seen in other optimization algorithms like Bacterial Foraging Optimization (BFO) [36] or 

PSO [37]. Our analysis reveals that the control parameter CR governs the rate of convergence of a DE population to 

an optimum. Future research may focus on analyzing the stability of the DE dynamics based on a stochastic 

Lyapunov energy function approach [38].  

 

 

Appendix A1 

 
Explanation of assumption ii) in section 3.1: In this work we aim at a stability analysis of a DE population. 

For that we assume the population is closely spaced and study how the population finally converges. Apart 

from this reason this assumption serves another purpose too. It allows us to carry out some simplifications to 

reach equation (12) and to carry out analysis further. After (11) it is assumed that mm xU −  is very small.  

 mU can assume only two values mx  and mV  respectively.  

Then, mmmm xVxU −≤− , equality holds if mm VU = . 

)1()()( 3221321 FRXXFXXXXFxXxV rrrrrrmrmm +≤−+−≤−+−=−  

Where, R is the range of the population i.e. minmax xxR −= . 

So, )1( FRxVxU mmmm +≤−≤−         )1( FRxU mm +≤−⇒ . 

Population variance is defined as ∑
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Finally ))((2)1( xVarNPFRxU mm ≤+≤−⇒ . Thus if f )(xVar  is small (which is the case 

during the final stages of search on a unimodal fitness landscape for DE) in that case mm xU −  is also very 

small.  

 

Appendix A.2 

 
In this section we carry out a similar analysis for the DE/current-to-rand/1 scheme illustrated in equation (10). Next 

we carry out previous analysis for ‘DE/current-to-rand/1’. Besides previous assumptions described in section 3.1 we 

also assume crossoverNP kkkk ==== ...........21 . This assumption is made to simplify the analysis. Similar to 

the derivations done in theorem 1 and 2, we calculate the following expectations. 

                                            )()( mavcrossovermm xxkxUE −=−                                                                          (34) 

                 )22()21()(
2222222222

avcrossoveravmcrossovermcrossover
av

crossovermm xFkxxkxkFxkxUE −−++=− ,      (35) 

where, ∑
=
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i

i
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x
NP

x
1

22 1
 

Selection step is exactly same in the two versions of algorithms. Theorem 3 also holds for this case. From theorem 3,  

we obtain expression for 








dt

dx
E m

, which is as following, 

                            )(
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8
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k

dt

dx
E −+−−=                                                          (36) 

Substituting values from equations (32) and (33) we get, 

                                  newmnew

m xf
dt

dx
E βα += )()( '

,                                                                                        (37) 

where, 
222222222
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Equation (35) shows that the fundamental dynamics of ‘DE/current-to-rand/1’ near an optimum also has a 

resemblance with the classical gradient descent algorithm. We carry out stability tests in a way exactly similar to 

that of done in section 4. We found that ‘DE/current-to-rand/1’ is also asymptotically stable, satisfying Liapunov’s 

criterion. In this case convergence time becomes 

crossoverk

1
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