
On Stability and Convergence of the Population-Dynamics in Differential

Evolution

Sambarta Dasgupta

1
, Swagatam Das

1
, Arijit Biswas 1 and Ajith Abraham

2

1 Dept. of Electronics and Telecommunication Engg,

Jadavpur University, Kolkata, India

2Center of Excellence for Quantifiable Quality of Service,

Norwegian University of Science and Technology, Norway

ajith.abraham@ieee.org

Abstract —Theoretical analysis of the dynamics of evolutionary algorithms is believed to be very important to understand the

search behavior of evolutionary algorithms and to develop more efficient algorithms. In this paper we investigate the dynamics of

a canonical Differential Evolution (DE) algorithm with DE/rand/1 type mutation and binomial crossover. Differential Evolution

(DE) is well-known as a simple and efficient algorithm for global optimization over continuous spaces. Since its inception in

1995, DE has been finding many important applications in real-world optimization problems from diverse domains of science and

engineering. The paper proposes a simple mathematical model of the underlying evolutionary dynamics of a one-dimensional DE-

population. The model shows that the fundamental dynamics of each search-agent (parameter vector) in DE employs the gradient-

descent type search strategy (although it uses no analytical expression for the gradient itself), with a learning rate parameter that

depends on control parameters like scale factor F and crossover rate CR of DE. The stability and convergence-behavior of the

proposed dynamics is analyzed in the light of Lyapunov’s stability theorems very near to the islolated equilibrium points during

the final stages of the search. Empirical studies over simple objective functions are conducted in order to validate the theoretical

analysis.

Keywords: Differential Evolution, Numerical Optimization, Gradient Decent Search, Asymptotic stability,

1. Introduction

In Artificial Intelligence (AI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic

population-based metaheuristic optimization algorithm. An EA uses some mechanisms inspired by biological

evolution: reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem

play the role of individuals in a population, and the objective function (also known as cost function or fitness

function in literature) determines the environment within which the solutions "live". Evolution of the population

then takes place after the repeated application of the above operators. Theoretical analysis of evolutionary

algorithms has received increasing attention in the recent years [1]. A few examples of interesting topics are, among

many others, convergence analysis [2, 3], dynamics of evolution strategies [4], genetic algorithms [5, 6], and

analysis of average computational time [7]. However, the dynamics of EAs during optimization and the roles of each

genetic operator are still unclear and stand as a significant research problem at its own right. The analysis of

dynamics of EAs is very helpful not only to understand working mechanism of EAs [8] but also to improve

performance of EAs and to propose new algorithms [9] because the solution of an optimizer is the result of the

dynamics of EAs. Recently the convergence and stability of another state-of-the-art real parameter optimization

technique called Particle Swarm Optimization (PSO) [10] has been undertaken by Trelea [11], Poli et al. and

Kadirkamanathan et al. [12]. In [12] the authors have used the Lyapunov stability theorems to judge the stability and

convergence of the search-agents (called particles) in PSO.

Since its inception in 1995, a good volume of research has been undertaken in order to improve the performance of

the DE algorithm over complex and multi-modal fitness landscapes. There exists a plethora of works concerning the

empirical study of parameter selection and tuning process in DE [13-18] and its application to optimization

problems [19, 20]. Little research has, however, been undertaken to model the underlined search dynamics of DE,

which would enable us to understand how and why DE manages to find the optima of many difficult numerical

functions so fast. Some significant work in this direction was reported in [21, 22, and 13] by Zaharie, where she

theoretically analyzed the influence of the variation operators and their parameters on the expected population

variance. Zaharie [21] showed that the expected population variance (after applying mutation and crossover or

recombination) of DE is greater than that of the ES algorithm analyzed in [23]. This finding could explain to some

extent the excellent performance of DE on certain test functions. The works of Zaharie [21] however did not focus

on modeling DE as a dynamical system and analyzing its stability and convergence properties from there. Neither

have they accounted for the control parameters that govern the final convergence of all the DE vectors to an isolated

optimum. The study undertaken in this paper, attempts to make a humble contribution in these contexts.

In this paper, we provide a simple mathematical model of DE/rand/1/bin scheme (which is the most popular variant

of DE family [19]). Each parameter vector is modeled as a search-agent moving under the directives of the DE

algorithm, over the fitness landscape in continuous time searching for the optima. The survival-of-the-fittest type

selection mechanism in DE has been modeled with the unit step function and then approximated using the

continuous logistic function in order to apply standard calculus techniques for further analysis. Our model attempts

to find out an expected velocity of each parameter vector towards the optimum over successive time-steps. It also

tries to relate the search mechanism of DE with that of the classical gradient descent search technique [24, 25]. A

few earlier attempts to hybridize DE and GA with the gradient descent techniques, can be found in [26, 27]. Our

model, however, indicates that the fundamental equation governing the expected velocity of the search agents over a

continuous fitness landscape in DE has itself got a striking resemblance with that of the steepest descent search. The

term analogous to the learning rate in steepest descent, for DE, becomes a function of control parameters like F and

CR. Our analysis indicates that DE employs some kind of estimation of the gradient (not any analytical expression

of the gradient itself though) in order to direct its search towards the optima. Based on the proposed model, the

stability and convergence of the DE-vectors in a small neighborhood centered on an isolated equilibrium point, has

been investigated with the Lyapunov stability theorems [28, 29]. The Lyapunov’s theorems are widely used in

nonlinear system analysis to determine the necessary conditions for stability of a dynamical system. The theoretical

results, presented in this context, show that the crossover rate CR mainly governs the time taken by a single search-

agent to converge to an arbitrarily small neighborhood around the optimum. Future works may consider some

special tuning mechanisms for CR that facilitate quick convergence to an equilibrium (which is usually an optimum

during the final stages of search). Simple experimental results have also been provided to support the theoretical

claims made in the paper. In the appendix A.2 we provide an equivalent mathematical model for the DE/current-to-

rand/1 scheme which uses arithmetic recombination operator so that the trial vectors may remain rotationally

invariant [19].

2. The Classical DE Algorithm – an Outline

Like any other evolutionary algorithm, DE starts with a population of NP D-dimensional parameter vectors

representing the candidate solutions. We shall denote subsequent generations in DE by max...,1,0 GG = . Since the

parameter vectors are likely to be changed over different generations, we may adopt the following notation for

representing the i-th vector of the population at the current generation as:

].,.....,,,[,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

 (1)

For each search-variable of the problem, there may be a user-specified range within which value of the variable

should lie for more accurate search results at less computational cost. The initial population (at 0=G) should cover

the entire search space as much as possible by uniformly randomizing individuals within the search space

constrained by the prescribed minimum and maximum

bounds: },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

. Hence we may initialize the j-th

component of the i-th vector as,

)()1,0(min,max,,min,0,, jjjijij xxrandxx −⋅+= , (2)

where)1,0(, jirand is a uniformly distributed random number lying between 0 and 1 and is instantiated

independently for each component of each vector. Following steps are taken next: mutation, crossover, and

selection, which are explained in the following subsections.

a) Mutation:

After initialization, DE creates a donor vector GiV ,

�

 corresponding to each population member or target

vector GiX ,

�

in the current generation through mutation. It is the method of creating this donor vector, which

differentiates between the various DE schemes. Five most frequently referred mutation strategies implemented in the

public-domain DE codes available online at http://www.icsi.berkeley.edu/~storn/code.html are listed below:

 “DE/rand/1”:).(
,,,,

321 GrGrGrGi iii XXFXV
����

−⋅+= (3)

 “DE/best/1”:).(
,,,,

21 GrGrGbestGi ii XXFXV
����

−⋅+= (4)

 “DE/target-to-best/1”:).()(
,,,,,,

21 GrGrGiGbestGiGi ii XXFXXFXV
������

−⋅+−⋅+= (5)

 “DE/best/2”:).()(
,,,,,,

4321 GrGrGrGrGbestGi iiii XXFXXFXV
������

−⋅+−⋅+= (6)

 “DE/rand/2”:).()(
,,,,,,

54321 GrGrGrGrGrGi iiiii XXFXXFXV
������

−⋅+−⋅+= (7)

The indices ir1 , ir2 , ir3 , ir4 , and ir5 are mutually exclusive integers randomly chosen from the range [1, NP], and all are

different from the index i. These indices are randomly generated once for each donor vector. The scaling factor F is

a positive control parameter for scaling the difference vectors. GbestX ,

�

 is the best individual vector with the best

fitness (i.e. lowest objective function value for minimization problem) in the population at generation G. The general

convention used for naming the various mutation strategies is DE/x/y/z, where DE stands for Differential Evolution,

x represents a string denoting the vector to be perturbed and y is the number of difference vectors considered for

perturbation of x. z stands for the type of crossover being used (exp: exponential; bin: binomial). The following

section discusses the crossover step in DE.

b) Crossover:

To increase the potential diversity of the population, a crossover operation comes into play after generating the

donor vector through mutation. The DE family of algorithms can use two kinds of crossover schemes - exponential

and binomial [1-3]. The donor vector exchanges its components with the target vector GiX ,

�

 under this operation to

form the trial vector],...,,,[,,,,3,,2,,1, GiDGiGiGiGi uuuuU =
�

. In exponential crossover, we first choose an integer n

randomly among the numbers],1[D . This integer acts as a starting point in the target vector, from where the

crossover or exchange of components with the donor vector starts. We also choose another integer L from the

interval],1[D . L denotes the number of components; the donor vector actually contributes to the target. After a

choice of n and L the trial vector:

 =Giju ,,
 Gijv ,, , for

DDD
Lnnnj 1,...,1, +−+=

Gijx ,,

, for all other],1[Dj ∈ (8)

where the angular brackets
D

 denote a modulo function with modulus D. The integer L is drawn from],1[D

according to the following lines of pseudo code.

L = 0;

DO

{

 L=L+1;

} WHILE (())1,0((Crrand < AND (DL <)) ;

Hence in effect, probability (L ≥ υ) = (Cr)
 υ-1

 for any υ > 0. ‘Cr’ is called crossover rate and it appears as a control

parameter of DE just like F. For each donor vector, a new set of n and L must be chosen randomly as shown above.

On the other hand, binomial crossover is performed on each of the D variables whenever a randomly picked number

between 0 and 1 is less than or equal to the Cr value. In this case the number of parameters inherited from the

mutant has a (nearly) binomial distribution. The scheme may be outlined as,

 Giju ,, =
Gij

v ,, , if (Crrand ji ≤)1,0(, or)randjj =

 Gijx ,, , otherwise (9)

where)1,0(, jirand]1,0[∈ is a uniformly distributed random number, which is called a new for each j-th component

of the i-th parameter vector.],....,2,1[Djrand ∈ is a randomly chosen index, which ensures that GiU ,

�

gets at least one

component from GiV ,

�

.

Fig. 1: Change of the trial vectors generated through the crossover operation described in equation (9) due to rotation of the

coordinate system

The crossover operation described in equation (9) is basically a discrete recombination [3]. Figure 1 illustrates a

two-dimensional example of recombining the parameters of two vectors GiX ,

�

and GiV ,

�

, according to this crossover

operator, where the potential trial vectors are generated at the corners of a rectangle. As can be seen from Figure 1,

discrete recombination is a rotationally variant operation. Rotation transforms the coordinates of both vectors and

thus changes the shape of rectangle as shown in Figure 1. Consequently, the potential location of the trial vector

 2x

2'x

 GiU ,_2

�

 GiV ,

�

 1x

GiX ,

�

GiU ,_1

�

1'x GiU ,_4

�

GiU ,_3

�

moves from the possible set (GiU ,_1

�

, GiU ,_2

�

) to (GiU ,_3

�

, GiU ,_4

�

). To overcome this limitation, a new trial vector

generation strategy ‘DE/current-to-rand/1’ is proposed in [18], which replaces the crossover operator prescribed in

equation (9) with the rotationally invariant arithmetic crossover operator to generate the trial vector GiU ,

�

 by linearly

combining the target vector GiX ,

�

and the corresponding donor vector GiV ,

�

as follows:

).(,,,, GiGiGiGi XVKXU

����

−⋅+=

Now incorporating equation (3) in (10) we have:

).)((,,,,,, 321 GiGrGrGrGiGi XXXFXKXU

������

−−⋅+⋅+=

which further simplifies to:

),()(,,
/

,,,, 321 GrGrGiGrGiGi XXFXXKXU
������

−⋅+−⋅+= (10)

where K is the combination coefficient, which has been shown [18] to be effective when it is chosen with a uniform

random distribution from [0, 1] and FKF ./ = is a new constant here.

c) Selection:

To keep the population size constant over subsequent generations, the next step of the algorithm calls for selection.

This operation determines which one of the target and the trial vector survives to the next generation i.e.

at 1+= GG . The selection operation may be outlined as:

 1, +GiX
�

,,GiU
�

= if)()(,, GiGi XfUf
��

≤

 ,,GiX
�

= if)()(,, GiGi XfUf
��

> (11)

where)(Xf
�

is the function to be minimized. So if the new trial vector yields a lower value of the objective

function, it replaces the corresponding target vector in the next generation; otherwise the target is retained in the

population. Hence the population either gets better (w.r.t. the minimization of the objective function) or remains

constant, but never deteriorates. The complete pseudo code has been provided below:

Pseudo-code for the DE algorithm family

 Step 1. Set the generation number 0=G and randomly initialize a population of NP

individuals },......,{ ,,1 GNPGG XXP
��

= with],.....,,,[,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

 and each individual

uniformly distributed in the range],[maxmin XX
��

,

 where },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

with],....,2,1[NPi = .

Step 2. WHILE stopping criterion is not satisfied

 DO

 FOR 1=i to NP //do for each individual sequentially

 Step 2.1 Mutation Step

 Generate a donor vector },.......,{ ,,,,1, GiDGiGi vvV =
�

corresponding to the i-th target vector GiX ,

�

 via

one of the different mutation schemes of DE (equations (3) to (7)).

 Step 2.2 Crossover Step

 Generate a trial vector },.......,{ ,,,,1, GiDGiGi uuU =
�

 for the i-th target vector GiX ,

�

through

binomial crossover (equation (9)) or exponential crossover (equation (8)) or through the arithmetic

crossover (equation (10)).

 Step 2.3 Selection Step

 Evaluate the trial vector GiU ,

�

 IF)()(,, GiGi XfUf
��

≤ , THEN GiGi UX ,1,

��

=+ ,)()(,1, GiGi UfXf
��

=+

 IF)()(,, GbestGi XfUf
��

< , THEN GiGbest UX ,,

��

= ,)()(,, GiGbest UfXf
��

=

 END IF

 END IF

 ELSE GiGi XX ,1,

��

=+ ,)()(,1, GiGi XfXf
��

=+

 END FOR

 Step 2.4 Increase the Generation Count 1+= GG

 END WHILE

3. The Mathematical Model of the Population-Dynamics in DE

3.1 Assumptions

Suppose ℜ→ℜ:)(xf be the function of a single variable x and is to be optimized using the DE Algorithm. Let

},........,{ 21 NPxxx be a set of trial solutions forming the population subjected to DE search where NP denotes

the population size. In order to validate our analysis, we make certain assumptions, which are listed below:

i) The objective function)(xf is assumed to be of class 2C (please note that a function f is said to be of

class kC if the derivatives)(21 ,...,, kfff exist and are continuous [30]). Also let)(xf be Lipschitz

continuous [31], that is given any two points x and y ℜ∈ , f satisfies the Lipschitz condition

yxLyfxf −≤− .)()(with the value of Lipschitz constant 1≤L in the region of the fitness landscape

(i.e.)(xf is actually a contraction mapping), where our analysis applies. Moreover the objective

function is unimodal in the region of interest.

Explanation: Goal of our work is to analyze stability of DE population during the final stages of the

search. To study stability and convergence, we assume that already due to DE-type mutation and

crossover operations, the population have crowded into a small neighborhood surrounding an optimum.

The above hypotheses of regularity made on the objective function indicate that the value of the gradient

becomes small under such conditions. This facilitates the analysis as will be evident from appendix A.1.

ii) The population of NP trial solutions is limited within a small region i.e. individual trial solutions are

located very close to each other. According to [21] and [32], this is usually the case during the later

stages of the search, when the parameter vectors concentrate in a compact cluster around the global

optimum, and especially when the scaling factor F is set at 0.5. Please note that the justification for this

assumption has been provided in appendix A.1.

iii) Dynamics is modeled assuming the vectors as search-agents moving in continuous time.

Explanation: A population member (trial solution) may change its position with time, which in turn may

change its objective function value. Computer simulation of the algorithm, however, proceeds through

discrete generations. Certain amount of processor time is elapsed between two successive generations. Thus,

in the virtual world of simulations, a solution can change its position only at certain discrete time instants.

This change of position is ideally instantaneous. In between two successive generations it remains practically

immobile. Without losing generality, the time between two successive generations may be defined as unit

time for the following derivation. But we have assumed continuous time to model it as a dynamic physical

system, where it is not possible to have instantaneous position change. Hence, we assume within two

successive generations the position shifts continuously and linearly. In practice, time between two successive

generations i.e. computational time of generation is very small. This ensures that the approximation is fairly

good.

 Figure 2 depicts a favorable portion of a one- dimensional arbitrary objective function for our analysis.

Fig. 2: A DE population dispersed on a one-dimensional arbitrary fitness landscape

3.2 Modeling Different Steps of DE

Let mx be the m -th individual of the population, where NPm ,...,2,1= . During an generation of DE, it undergoes

three steps: mutation, crossover, and selection. Each step is modeled individually and finally they are merged to get

a generalized expression for the expectation value of the trial vector formed this way. In the following analysis,

upper case letter denotes random variables.

Three trial solutions are chosen at random from the population. Let 321 ,, rrr XXX be three trial solutions (random

variables) picked up randomly from population. Here, we assume trial solutions are drawn with replacement. i. e.

each trial solution chosen at a particular draw is returned to the population before next draw. This assumption makes

321 ,, rrr XXX independent of each other.

This means)()|(lrikrjlri xXPxXxXP ====

)()()(krjlrikrjlri xXPxXPxXxXP ====∩=⇒

Where, 3,2,1, =ji and NPlk)1(1, = and ji ≠

Difference of 32 , rr XX is scaled by a factor F and then 1rX is added with the scaled difference. Let mV be the

generated donor vector.

)(321 rrrm XXFXV −+=∴

For the one-dimensional analysis we omit the restriction that at least one component of the trial vector must come

from the donor. Hence in this case CR equals the true probability of the event that mm VU = . Equipped with these

assumptions we may assert the following theorems:

Figure 3: Probability density function of r

Theorem 1: The expected value of a trial vector mU corresponding to the target vector mx is given by

 avmm CRxxCRUE +−=)1()((12)

and the expected value of
2

mU is then given by,

2222

)()12()1()(avmm CRxxVarFCRxCRUE +++−= (13)

where avx is the mean of the population i.e. ∑
=

=
NP

i

iav x
NP

x
1

1
and)(xVar is the variance of the target population.

Proof: From Figure 3, probability of the event, CRr ≤ =≤=)(CRrP Area of the shaded region.

 CRCR =×= 1

Now, CRr ≤ and CRr > are mutually exclusive and exhaustive events.

CRCRrPCRrP −=≤−=>∴ 1)(1)(

)}]({))}()()((){([

)()(

1 1 1

321 kji

NP

i

NP

j

NP

k

krjrir

mm

xxFxxXxXxXCRrP

xCRrPUE

−+=∩=∩=∩≤

+>=∴

∑∑∑
= = =

Now, we have assumed that mutation and crossover are independent of each other i.e. r is independent

of 321 ,, rrr XXX .

))()()(()(

))()()((){(

321

321

krjrir

krjrir

xXxXxXPCRrP

xXxXxXCRrP

=∩=∩=≤=

=∩=∩=∩≤

)]([)}.()(){()()()(

1 1 1

321 kji

NP

i

NP

j

NP

k

krjrirmm xxFxxXxXxXPCRrPxCRrPUE −+=∩=∩=≤+>=∴ ∑∑∑
= = =

321 ,, rrr XXX are independent random variables.

 Hence,)()()()}()(){(321321 krjrirkrjrir xXPxXPxXPxXxXxXP =====∩=∩=

)]([)()()()()()(

1 1 1

321 kji

NP

i

NP

j

NP

k

krjrirmm xxFxxXPxXPxXPCRrPxCRrPUE −+===≤+>=∴ ∑∑∑
= = =

Now,
NP

xXPxXPxXP krjrir

1
)()()(321 ======

)]([
1

)()()(
1 1 1

3 kji

NP

i

NP

j

NP

k

mm xxFx
NP

CRrPxCRrPUE −+≤+>=∴ ∑∑∑
= = =

∑∑∑
= = =

−++−=∴
NP

i

NP

j

NP

k

kjimm xxFx
NP

CRxCRUE
1 1 1

3
)]([

1
)1()(

∑∑∑ ∑∑∑∑∑∑
= = = = = == = =

−++−=⇒
NP

i

NP

j

NP

k

NP

i

NP

j

NP

k

k

NP

i

NP

j

NP

k

jimm xxFx
NP

CRxCRUE

1 1 1 1 1 11 1 1

3
)]([

1
)1()(

∑∑∑
= = =

+−=⇒
NP

i

NP

j

NP

k

imm x
NP

CRxCRUE

1 1 1
3

][
1

)1()(

∑
=

+−=⇒
NP

i

imm x
NP

CRxCRUE

1

1
)1()(

avmm CRxxCRUE +−=∴)1()(

Now, similar to the previous one,

])}({))}()()((){([)()(2

1 1 1

321

22

kji

NP

i

NP

j

NP

k

krjrirmm xxFxxXxXxXCRrPxCRrPUE −+=∩=∩=∩≤+>=∴ ∑∑∑
= = =

Proceeding in the same manner,

∑ ∑ ∑
= = =

−++−=∴
NP

i

NP

j

NP

k

kjimm xxFx
NP

CRxCRUE
1 1 1

2

3

22
)}({

1
)1()(

])
1

(2
1

)12[()1()(2

1

2

1

2222 ∑∑
==

−++−=⇒
NP

i

i

NP

i

imm x
NP

Fx
NP

FCRxCRUE

∑∑∑ ∑∑∑
= = = = = =

=
NP

i

NP

j

NP

k

NP

i

NP

j

NP

k

kiji xxxx
1 1 1 1 1 1

∵ and ∑∑∑ ∑∑∑∑∑∑
= = = = = == = =

==
NP

i

NP

j

NP

k

NP

i

NP

j

NP

k

kj

NP

i

NP

j

NP

k

i xxx
1 1 1 1 1 1

22

1 1 1

2
∵

also

2

11 1 1 1 1









== ∑∑∑∑ ∑ ∑

== = = = =

NP

i

i

NP

i

NP

j

NP

k

NP

i

NP

j

jiji xNPxxNPxx∵

and

2

11 1 11 1 11 1 1









=== ∑∑∑∑∑∑∑∑∑∑

== = == = == = =

NP

i

i

NP

i

NP

j

NP

k

ik

NP

i

NP

j

NP

k

kj

NP

i

NP

j

NP

k

ji xNPxxxxxx∵ , we have,

∑∑∑
===

+−++−=
NP

i

i

NP

i

i

NP

i

imm x
NP

CRx
NP

x
NP

FCRxCRUE
1

22

11

2222
)

1
(])

1
(

1
)[12()1()(

2222
)()12()1()(avmm CRxxVarFCRxCRUE +++−=⇒

Where, 2

11

2
)

1
(

1
)(∑∑

==

−=
NP

i

i

NP

i

i x
NP

x
NP

xVar and ∑
=

=
NP

i

iav x
NP

x
1

1
, and hence the proof.

Remark: Note that if 0=CR , mm xUE =)(and
22

)(mm xUE = , i.e. the expected value of the trial vector

remains same as that of the target vector. This is intuitively simple as for 0=CR , the trial vector can only inherit

from the target but nothing from the donor/mutant vector. Again if 1=CR , avm xUE =)(and

222
)().12()(avm xxVarFUE ++= . Clearly if 10 << CR , the expected value of the trial vector lies in

between mx and avx .

Theorem 2: If the DE population may be modeled as a continuous-time, dynamic system, then the expectation value

of the velocity of an individual point on the fitness landscape may be given as:

)(
2

1
)(})()()12{(

8
)('22

mavmmav

m xxCRxfxxxVarFCR
k

dt

dx
E −+−++−= (14)

Proof: Let us assume that mutation and crossover occur in unit time to give rise to off offspring. In selection mx is

replaced by mU if the objective function value for mUx = is less than or equal to that for mxx = .This decision-

making is performed using Heaviside’s unit step function [33] , which is defined as follows:

 1)(=pu if 0≥p

 0= otherwise.

Now, let at time t position of m th trial solution be mx and at tt ∆+ it is changed to mm xx ∆+

Then,)](
)()(

[mm

mmmm xU
t

xxfxf
u

t

x
−

∆

∆+−
=

∆

∆

)](
)()(

[mm

m

m

mmmm xU
t

x

x

xxfxf
u

t

x
−

∆

∆

∆

∆+−
=

∆

∆
⇒

)](
)()(

[
00

mm

m

m

mmm

t

m

t
xU

t

x

x

xxfxf
uLt

t

x
Lt −

∆

∆

∆

∆+−
=

∆

∆
⇒

→∆→∆

)](
)()(

[
00

mm

m

m

mmm

t

m

t
xU

t

x

x

xfxxf
uLt

t

x
Lt −

∆

∆

∆

−∆+
−=

∆

∆
⇒

→∆→∆

)]()(['

mm

m

m

m xU
dt

dx
xfu

dt

dx
−−=∴ (15)

Now, we have to replace unit step function by logistic function to carry out the analysis. Ideally,

kpk e

ltpu
−∞→ +

=
1

1
)(.

Let us take a moderate value of k for analysis.
kp

e
pu

−+
≈

1

1
)(. Now, if p is very small. Then, kpe kp −≈− 1

[neglecting higher order terms]

1)
2

1(
2

1

2

1

1

1
)(−

−
−=

−
≈

+
≈∴

kp

kpe
pu

kp

Again assuming p to be very small and neglecting higher order terms in expansion of
1)

2
1(−−

kp
 we obtain,

 p
k

pu
42

1
)(+≈ (16)

Fig. 4: The unit step and the logistic functions.

Now, the population has a small divergence. mm xU −∴ is not very large (Explained in Appendix A1) and as

dt

dxm
is either 0 or mm xU − . This ensures

dt

dxm
 is small.

Also we have assumed that fitness landscape has a moderate slope i.e.)(' mxf is also small, which in turn suggests

that
dt

dx
xf m

m)(' is small. Thus from equations (14) and (15) we get,

)]()(
42

1
['

mm

m

m

m xU
dt

dx
xf

k

dt

dx
−−=

))((
4

1

)(
2

1

'

mmm

mm
m

xUxf
k

xU

dt

dx

−+

−
=⇒ (17)

Now,))((
4

'

mmm xUxf
k

− is small))((
4

1)])((
4

1['1'

mmmmmm xUxf
k

xUxf
k

−−≈−+∴ −
.

From equation (17) we get,

2

)()(
8

'2 mm

mmm

m xU
xfxU

k

dt

dx −
+−−= (18)

Now mU is a random variable.
dt

dxm∴ , which is a function of mU , is also a random variable.

Let us try to compute its expected value.

)(
2

1
)()(

8
)(

2'

mmmmm

m xUExUExf
k

dt

dx
E −+−−=

])([
2

1
)](2)()[(

8
)(

22'

mmmmmmm

m xUEUExxUExf
k

dt

dx
E −+−+−=⇒ (19)

Substituting values of)(),(
2

mm UEUE from equation (12) and (13) to equation (19) we get,

)(
2

1
)(})()()12{(

8
)('22

mavmmav

m xxCRxfxxxVarFCR
k

dt

dx
E −+−++−=

 and hence the proof.

Theorem 4: Let avx denote the centroid (mean of all points) of the current population and ∑
=

=
NP

m

mav x
NP

x
1

1
. Also

let us denote =−= mavm xxε deviation of individual from average. Then expected velocity of the centroid of the

population may be given by,

))(
1

(
8

)()12(
8

)('

1

2'2

mav

NP

m

mav

av xf
N

CR
k

fxVarFCR
k

dt

dx
E εε +−+−= ∑

=

 (20)

Proof: Now, ∑ ∑
= =

==
NP

i

NP

m

miav x
NP

x
NP

x
1 1

11

 ∑∑
==

==⇒
NP

m

m
NP

m

m

av

dt

dx

NP
x

NPdt

d

dt

dx

11

1
)

1
(

 ∑ ∑
= =

==⇒
NP

m

NP

m

mmav

dt

dx
E

NPdt

dx

NP
E

dt

dx
E

1 1

)(
1

)
1

()(

))(
2

1
)(})()()12{(

8
(

1
)(

1

'22

1

mav

NP

m

mmav

NP

m

av xxCRxfxxxVarFCR
k

NPdt

dx
E −+−++−=⇒ ∑∑

==

Now,∑
=

=−
NP

m

mav xx
1

0)(∑
=

−++−=∴
NP

m

mmav
av xfxxxVarFCR

k

NPdt

dx
E

1

'22)(})()()12{(.
8

(
1

)(

Let us denote =−= mavm xxε deviation of individual from average.

))(
1

(
8

))(
1

)(()12(
8

)(
'

1

2

1

'2

m

NP

m

m

NP

m

m

av xf
NP

CR
k

xf
NP

xVarFCR
k

dt

dx
E ∑∑

==

−+−=∴ ε

))(
1

(
8

)(
1

)()12(
8

)('

1

2

1

'2

mav

NP

m

m

NP

m

m

av xf
NP

CR
k

xf
NP

xVarFCR
k

dt

dx
E εε +−








+−=⇒ ∑∑

==

))(
1

(
8

)()12(
8

)('

1

2'2

mav

NP

m

mav
av xf

N
CR

k
fxVarFCR

k

dt

dx
E εε +−+−=∴ ∑

=

 (21)

Where, ∑
=

==
NP

m

mav xf
NP

f
1

'')(
1

average of the gradients for trial solution points on fitness landscape. This

completes the proof.

Remark: From theorem 3, we may write,

 DEmDE

m xf
dt

dx
E βα +−=)()('

 (22)

Where, })()()12{(
8

22

mavDE xxxVarFCR
k

−++−=α and)(
2

1
mavDE xxCR −=β

The classical gradient descent search algorithm is given by the following dynamics (continuous) in single dimension

[25]:

 βα
θ

+−= G
dt

d
. (23)

where α is the learning rate and β is the momentum.

The resemblance of equations (22) and (23) is not difficult to recognize and it suggests that, the dynamics of actual

DE uses some kind of estimation for the gradient of the objective function. In equation (20),)(' mDE xfα− term

on the R.H.S. is responsible for moving along the direction of the negative gradient, whereas DEβ represents a

component of velocity of a trial solution towards the mean vector (center of mass) of the population.

Evidently very near to an optimum, when 0)(' →mxf ,

)(
2

1
)(mavDE

m xxCR
dt

dx
E −=≈ β (24)

Clearly if the population converges towards the optimum,)(mav xx − tends to zero and 0)(→
dt

dx
E m

, thus once

reaching the optimum, average velocity of the population members ceases to exist. Thus 0)(→xVar ,

0→− mav xx and also 0→mε and from (24) we get 0)(→
dt

dx
E m

 and 0)(→
dt

dx
E av

.

4. Lyapunov Stability Analysis of the DE-Population

In this section we analyze the stability of the population-dynamics represented by equation (3.16) using the concept

of Lyapunov stability theorems [28]. We begin this treatment by explaining some basic concepts and their

interpretations from the standard literature on nonlinear control theory [29, 28].

Definition 1

A point exx
��

= is called an equilibrium state, if the dynamics of the system is given by

))((txf
dt

xd �
�

=

becomes zero at exx
��

= for any t i.e. 0))((=txf e

�
. The equilibrium state is also called equilibrium (stable) point

in D-dimensional hyperspace, when the state ex
�

 has D-components.

Definition 2

A scalar function)(xV
�

 is said to be positive definite with respect to the point ex
�

 in the region Kxx e ≤−
��

, if

0)(>xV
�

 at all points of the region except at ex
�

where it is zero.

Definition 3

A scalar function)(xV
�

is said to be negative definite if)(xV
�

− is positive definite.

Definition 4

 A dynamics))((txf
dt

xd �
�

= is asymptotically stable at the equilibrium point ex
�

, if

 a) it is stable in the sense of Lyapunov, i.e., for any neighborhood ()εS surrounding ex
�

 (()εS contains points

x
�

 for which ε≤− exx
��

) where there is a region ()δS ()(δS contains points x
�

 for which

δ≤− exx
��

), ε<δ , such that trajectories of the dynamics starting within ()δS do not leave ()εS as time

∞→t and

 b) the trajectory starting within ()δS converges to the origin as time t approaches infinity.

The sufficient condition for stability of a dynamics can be obtained from the Lyapunov’s theorem, presented below.

Lyapunov’s stability theorem [28, 34]

Given a scalar function)(xV
�

 and some real number 0>ε , such that for all x
�

 in the region ε≤− exx
��

 the

following conditions hold:

1) 0)(=exV
�

2) 0)(>xV
�

for exx
��

≠ , i.e.)(xV
�

 is positive definite.

3))(xV
�

 has continuous first partial derivatives with respect to all components of x
�

.

 Then the equilibrium state ex
�

 of the system))((txf
dt

xd �
�

= is

a) asymptotically stable if 0<
dt

dV
, i.e.

dt

dV
 is negative definite, and

 b) asymptotically stable in the large if 0<
dt

dV
 for exx

��
≠ , and in addition, ∞→)(xV

�
 as

∞→− exx
��

.

Remark: Lyapunov stability analysis is based on the idea that if the total energy in the system continually decreases,

then the system will asymptotically reach the zero energy state associated with an equilibrium point of the system. A

system is said to be asymptotically stable if all the states approach the equilibrium state with time.

To study stability of DE algorithm we first model it as an autonomous control system. Here each population member

mx is a state variable of the control system. From equation (14) we get,

)(
2

1
)(})()()12{(

8
)('22

mavmmav

m xxCRxfxxxVarFCR
k

dt

dx
E −+−++−= , for NPm ,...,2,1= .

Assuming the population to be concentrated into a small neighborhood around an optimum in a flatter portion of the

function, we have 1)(' <<mxf . Hence the equation can be written as,

)(
2

1
)(mav

m xxCR
dt

dx
E −= , for NPi ,...,2,1=

)
1

(
2

1
)(

1

m

NP

j

j
m xx

NP
CR

dt

dx
E −= ∑

=

, for NPi ,...,2,1= (25)

Actually (25) represents NP number of simultaneous equations. Next, we represent them using matrix notation.

From (25) we get,























































−

−

−

=





























NP

NP

x

x

x

NPNPNP

NPNPNP

NPNPNP

CR

dt

dx
E

dt

dx
E

dt

dx
E

....

....

....

....

1
1

.......
11

.....

.....

.....

.....

......

......

......

......

1
........1

11

1
.......

1
1

1

2

1

)(

.....

.....

)(

)(

2

1

2

1

 (26)

The above matrix equation is of the form []xA
dt

xd
E

�
�

=















, Where

T
NPxxxx],...,,[21=

�

 is the set of state

variables and





























−

−

−

=

1
1

.......
11

.....

.....

.....

.....

......

......

......

......

1
........1

11

1
.......

1
1

1

2

1

NPNPNP

NPNPNP

NPNPNP

CRA

We know that eigenvalues of system-matrix A are the poles of the system. Eigenvalues are those values of λ for

which [] 0det =− AIλ is satisfied, where I is the identity matrix of order NP .

[] 0

1
12

.......
11

.....

.....

.....

.....

......

......

......

......

1
........1

121

1
.......

1
1

12

det0det =





























+−−−

−+−−

−−+−

⇒=−

NPCRNPNP

NPNPCRNP

NPNPNPCR

AI

λ

λ

λ

λ (27)

After doing simple algebraic operations on the rows of the determinant in LHS of (27) we get,

 0)
2

(1 =+ −NPCR
λλ (28)

Clearly equation (28) is the characteristic equation of matrix A . From (28) we get the system eigenvalues as:

.
2

,.....,
2

,
2

,0
CRCRCR

−−−=λ

These values of λ are the system poles. We observe that one of these eigenvalues is zero and the rest are negative.

Since one eigenvalue is zero, the system is not asymptotically stable and must have a DC component in the output.

In the following section, we investigate whether the system is stable in the sense of Lyapunov.

Theorem 5: The system defined in equations (25) and (26) is stable in the sense of Lyapunov.

Proof: We are assuming the population is located very close to optima. Hence value of the gradient is negligibly

small. So equation (25) holds true in such a region.

)
1

(
2

1
)(

1

m

NP

j

j
m xx

NP
CR

dt

dx
E −= ∑

=

, for NPm ,...,2,1=

The condition for an equilibrium point is 0)(=
dt

dx
E m

, for NPm ...,2,1= [according to definition 1]. We

consider the case where the DE population is confined within a small neighborhood of an isolated optimum and over

the entire population value of the gradient is very small. In this case, the preferred equilibrium point should be the

optimum itself. This ensures that with time there is no change in values of state variables i.e. positions of the

population members after they hit the optimum. Now from equation (25),

 0)(=
dt

dx
E

m

 0)
1

(
2

1

1

=−⇒ ∑
=

m

NP

j

j xx
NP

CR , for NPi ...,2,1= .

 ∑
=

==⇒
NP

j

avji xx
NP

x

1

1
, for NPi .2,1= .

This is possible only if all of the state variables are equal in value i.e. eNP xxxx ====21 , where ex

is the equilibrium position. At this point we would like to mention that as the search progresses; the population-

members in DE get to the better portions of the search space or remain constant owing to its greedy selection

strategy. In case of a smooth, unimodal fitness landscape, the solution vectors generally crowd into a small

neighborhood surrounding the optimum. Thus during the later stages of search, the equilibrium point ex basically is

identical to the optimum, once reaching at which point, population members are expected not to change any further

and thus this point should satisfy the condition NPxxx ===21 as well. This section examines the stability

of the solution vectors very near to such an optimum point of the search space. Figure 5 shows a fitness landscape

and an equilibrium position at the optimum. Next, we define Lyapunov’s Energy function V as,

 ∑
=

−=
NP

i

aviNP xxtxxxV
1

2

21)(),,.......,((29)

Clearly 0=V , if eNP xxxx ====21

 0> , otherwise.

Fig 5: State variables along with equilibrium position.

Energy function is always positive except the equilibrium, where it becomes zero. So, energy function is a positive

definite with respect to equilibrium [from definition 2]. It is also to be noted that basically))((xVarNPV = .

Differentiating equation (29) with respect to time we get,

)()(2
1 dt

dx

dt

dx
xx

dt

dV avm
NP

m

avm −−= ∑
=

)()(2
1









−







−=








∑

= dt

dx
E

dt

dx
Exx

dt

dV
E avm

NP

m

avm
 (30)

From (25) we get ,

)(
2

1
)(mav

m xxCR
dt

dx
E −= and 0

1
))

1
(()(

11

=







== ∑∑

==

NP

i

i
NP

i

i

av

dt

dx
E

NP
x

NPdt

d
E

dt

dx
E .

Putting expectation values in (30),

2

1

)(∑
=

−−=






 NP

i

avi xxCR
dt

dV
E (31)

From equation (30) it is evident that 








dt

dV
E is 0 when eNP xxxx ====21 and is negative

otherwise. Hence 








dt

dV
E is a negative definite with respect to equilibrium point. Here V is positive definite and










dt

dV
E is negative definite, satisfying Lyapunov’s stability theorem. We can infer that the system is stable in the

sense of Lyapunov.

Remark: Clearly V has continuous partial derivative. It can be noted that the population average or the center of

the mass of the system does not change with time (as 0
1

))
1

(()(
11

=







== ∑∑

==

NP

i

i
NP

i

i

av

dt

dx
E

NP
x

NPdt

d
E

dt

dx
E .).

Already we have mentioned condition for equilibrium is eNP xxxx ====21 , where ex the

equilibrium position is. Now, if all population members are equal, then each of them equals to population average,

i.e. avNP xxxx ====21 . This leads to the conclusion ave xx ≡ . Initially, population was scattered

within a small region around the optima. So, the average was also very close to the actual optima. Lyapunov’s

function in this case is directly proportional to the population variance. With time the initially dispersed populations

gather at the center of mass of system (which almost remains steady in the time interval), and eventually population

variance diminishes to 0. This leads to convergence of system. Average velocity of m-th population member

is)(
2

1
mav xxCR − . Average acceleration is

dt

dx
CR

dt

dx

dt

dx
CR mmav

2

1
)(

2

1
−=− (as of mass remains

unchanged). So, acceleration is directly proportional to velocity and the negative sign signifies it acts in opposite

direction. This characteristic of the system dynamics suggests that near the optima the algorithm acts as a

mechanical damper, and average position acts as a stable attracter. The velocity of a population member gradually

attenuates to zero by the damping force.

Theorem 6: An estimate of the system time-constant can be
CR

1

Proof: Using equation (27), equation (29) can be written as

CR

dt

dV
E

V 1
=









−

. (32)

The term in the denominator of L.H.S of above expression is the expected or average value of time rate of change of

energy function. Let the process be carried out repeatedly for same initial conditions and parameter values and an

average of energy function is calculated for the runs and the average of the energy function be denoted by V .

Time rate of change of the average is also computed and let it be denoted as
dt

Vd
 .We assume that the runs of the

algorithm are independent and probability associated with selecting a population member in any stage of the

algorithm does not change with time i.e. the process is time invariant. In that case we may expect from equation (32)

CR

dt

Vd

V 1
=

−

)
/1

exp(0
CR

t
VV −=⇒ (33)

where 0V is the initial value of energy function. We have seen that energy function decreases with time. We may

define a time-constant for the system as the time interval in which the energy function reduces to
e

1
 part of its initial

value. If we denote this time-constant byT , Putting
e

V
V 0= and Tt = in (31), we have time-

constant
CR

T
1

== .

5. Experimental Results

In this section we provide the phase plots (
dt

dx
v = versus x plots) for DE/rand/1/bin, which supports the theoretical

results derived in the earlier section. A population of 11 vectors is taken to optimize the single dimensional sphere

function
2)(xxf = using the DE Algorithm. The vectors are randomly initialized in the interval (-5, 5). In Figure 6

four phase-trajectories have been shown for the median vector (when the population is ranked according to the final

fitness values of the vectors) over four independent runs (with different initial populations). These phase trajectories

verifies our theoretical finding that near an optima, the expected velocity)(
dt

dx
E of individual member of

population gradually approaches zero. Experimental results suggest that the D.C component at the output of the

system defined in equation (26) is actually zero, leading all the vectors to converge to the equilibrium point, which is

identical to the optimum for a uni-modal function.

 (a) (b)

 (c) (d)

Fig. 6: Phase trajectory of the median order vector (in a population of size NP = 11) for 4 independent runs (with different seeds

for the random number generator) for
2)(xxf =

Similarly, we construct phase trajectories for objective function
2

1)(x
exf

−−= . New set of phase trajectories is

shown in Figure 7. The vectors are randomly initialized in the interval (-5, 5).

 (a) (b)

 (c) (d)

Fig. 7: Phase trajectory of the median order vector (in a population of size NP = 11) for 4 independent runs (with different seeds

for the random number generator) for
2

1)(x
exf

−−=

We have estimated time-constant of Lyapunov energy function in theorem 6. Now, according to equation (33)

convergence time is inversely proportionate to crossover probability. In Figure 8 plots of time variations of

Lyapunov’s energy function is provided for various crossover probabilities (objective function used 2)(xxf =).

From Figure 8 we observe as crossover probability increases convergence time gradually decreases. This matches

with our theoretical finding of theorem 6. From Figure 8 we graphically determine time-constant for the energy

function, which is the time in which Lyapunov energy function diminishes to e -th (approx 2.71) fraction of its

initial value. In Table 1 below we make a comparison between convergence time measured from Figure 7 and found

from equation (33).

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

20

Tim e

L
ia

p
u
n
o
v
 E

n
e
rg

y

F
u
n
c
ti
o
n
 V

a
lu

e

fo r CR= 0.55

for CR= 0.65

for CR= 0.75

Fig. 8: Convergence characteristics for various values of crossover probability.

Table 1 shows that the theoretically predicted convergence time-constant closely matches its experimentally found

counterpart. This confirms the finding of theorem 6.

Table 1: Comparison between calculated and experimental convergence time.

6. Conclusions

Differential Evolution (DE) has been regarded as a competitive form of Evolutionary Algorithm for function

optimization problems in recent years. In this article we provide a simple analysis of the evolutionary dynamics

undertaken by each of the population members in DE/rand/1/bin, which appears as one of the most popular and

widely used variant of the DE. We apply simple statistical and calculus-based methods in order to derive a

dynamical model of the DE-population that undergoes mutation, binomial crossover and selection. The selection

mechanism in DE has been modeled by the well-known unit step function, which was subsequently approximated by

continuous logistic function. One important finding of our analysis is the similarity of the fundamental differential

equation governing the expected velocity of a search-agent in DE with that of the classical gradient descent search

with momentum. This suggests that DE uses a stochastic estimate of the gradient of the objective function (which

was assumed to be continuous in our analysis in order to keep the mathematics less rigorous) in order to locate the

optima of the function. It is due to the gradient descent type search strategy, that DE converges much faster than

algorithms like GA or Particle Swarm Optimization (PSO) over unimodal benchmarks [35]. However, the actual

algorithm does not take into account any analytical expression of the true function-gradient and due to the

Convergence time

(Expressed in number of generations)

 Crossover probability

 Measured graphically Calculated theoretically

0.55 2.4 2.31

0.65 2.1 1.94

0.75 1.8 1.73

randomness introduced by mutation and crossover operations into the dynamics of an individual, can escape

trapping in local optima in many cases.

Based on the mathematical model derived here, we also analyze the stability of a DE population, very near to an

isolated optimum, which acts as the equilibrium point for the dynamics. Application of Lyapunov’s stability

theorems reveals that the near-equilibrium behavior of a DE population is inherently stable and free from any kind

of oscillatory behaviors seen in other optimization algorithms like Bacterial Foraging Optimization (BFO) [36] or

PSO [37]. Our analysis reveals that the control parameter CR governs the rate of convergence of a DE population to

an optimum. Future research may focus on analyzing the stability of the DE dynamics based on a stochastic

Lyapunov energy function approach [38].

Appendix A1

Explanation of assumption ii) in section 3.1: In this work we aim at a stability analysis of a DE population.

For that we assume the population is closely spaced and study how the population finally converges. Apart

from this reason this assumption serves another purpose too. It allows us to carry out some simplifications to

reach equation (12) and to carry out analysis further. After (11) it is assumed that mm xU − is very small.

 mU can assume only two values mx and mV respectively.

Then, mmmm xVxU −≤− , equality holds if mm VU = .

)1()()(3221321 FRXXFXXXXFxXxV rrrrrrmrmm +≤−+−≤−+−=−

Where, R is the range of the population i.e. minmax xxR −= .

So,)1(FRxVxU mmmm +≤−≤−)1(FRxU mm +≤−⇒ .

Population variance is defined as ∑
=

−=
NP

i

i xx
NP

xVar
1

2)(
1

)(, where NP is population size.

() ()()2

min

2

max

1

2 1
)(

1
)(xxxx

NP
xx

NP
xVar

NP

i

i −+−≥−= ∑
=

[considering only two specific terms out of NP number of terms]

() () []2
minmax

2
minmax

2
min

2
max)()2(

2

1
xxxxxxxxx −+−+=−+− [as

22

22

22







 −
+







 +
=+

baba
ba]

() () []
22

1 2
2

minmax

2

min

2

max

R
xxxxxx =−≥−+−

So, () ()()
NP

R
xxxx

NP
xVar

2

1
)(

2
2

min

2

max ≥−+−≥
NP

R
xVar

2
)(≥⇒ .

Finally))((2)1(xVarNPFRxU mm ≤+≤−⇒ . Thus if f)(xVar is small (which is the case

during the final stages of search on a unimodal fitness landscape for DE) in that case mm xU − is also very

small.

Appendix A.2

In this section we carry out a similar analysis for the DE/current-to-rand/1 scheme illustrated in equation (10). Next

we carry out previous analysis for ‘DE/current-to-rand/1’. Besides previous assumptions described in section 3.1 we

also assume crossoverNP kkkk ====21 . This assumption is made to simplify the analysis. Similar to

the derivations done in theorem 1 and 2, we calculate the following expectations.

)()(mavcrossovermm xxkxUE −=− (34)

)22()21()(
2222222222

avcrossoveravmcrossovermcrossover
av

crossovermm xFkxxkxkFxkxUE −−++=− , (35)

where, ∑
=

=
NP

i

i
av

x
NP

x
1

22 1

Selection step is exactly same in the two versions of algorithms. Theorem 3 also holds for this case. From theorem 3,

we obtain expression for 








dt

dx
E m

, which is as following,

)(
2

1
)()(

8
)(

2'

mmmmm

m xUExUExf
k

dt

dx
E −+−−= (36)

Substituting values from equations (32) and (33) we get,

 newmnew

m xf
dt

dx
E βα +=)()('

, (37)

where,
222222222

22()21(
8

avcrossoveravmcrossovermcrossover
av

crossovernew xFkxxkxkFxk
k

−−++−=α

and)(
2

mav

crossover

new xx
k

−=β .

Equation (35) shows that the fundamental dynamics of ‘DE/current-to-rand/1’ near an optimum also has a

resemblance with the classical gradient descent algorithm. We carry out stability tests in a way exactly similar to

that of done in section 4. We found that ‘DE/current-to-rand/1’ is also asymptotically stable, satisfying Liapunov’s

criterion. In this case convergence time becomes

crossoverk

1

References

1. Reeves, C. R. and Rowe, J. E., Genetic Algorithms – Principles and Perspectives: A Guide to GA Theory, Kluwer

Academic Publishers, 2003.

2. Rudolph, G., Convergence Analysis of Canonical Genetic Algorithms, IEEE Transactions on Neural Networks, 5(1),

pages 96–101, 1994.

3. Th. Baeck., Order Statistics for Convergence Velocity Analysis of Simplified Evolutionary Algorithms. Foundations of

Genetic Algorithms, pages 91-102, 1994.

4. Beyer, H.-G., On the Dynamics of EAs without Selection, Proceedings of Foundations of Genetic Algorithms, 5

(FOGA-5), pages 5–26, 1999.

5. Vose, M. D., The Simple Genetic Algorithm: Foundations and Theory, The MIT Press, 1999.

6. Pruegel-Bennett, A., Modeling Genetic Algorithm Dynamics, Theoretical Aspects of Evolutionary Computing, pages

59–85, 2001.

7. He, J. and Yao, X., Towards an analytic framework for analyzing the computation time of evolutionary algorithms,

Artificial Intelligence, 145(1-2), pages 59-97, 2003.

8. Okabe, T., Jin, Y. and Sendhoff, B., On the Dynamics of Evolutionary Multi-Objective Optimization, Proceedings of

Genetic and Evolutionary Computation Conference (GECCO-2002), pages 247–255, 2002.

9. Okabe, T., Jin, Y., and Sendhoff, B., Evolutionary Multi-Objective Optimization with a Hybrid Representation,

Proceedings of Congress on Evolutionary Computation (CEC-2003), pages 2262–2269, 2003.

10. Trelea, I. C., The particle swarm optimization algorithm: convergence analysis and parameter selection, Information

Processing Letters, vol. 85, pp. 317-325, Mar. 2003.

11. Poli, R. and Broomhead, D., Exact analysis of the sampling distribution for the canonical particle swarm optimiser and

its convergence during stagnation. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary

Computation (London, England, July 07 - 11, 2007). GECCO '07. ACM, New York, NY, 134-141, 2007.

12. Kadirkamanathan, V., Selvarajah, K., .Fleming, P. J., Stability analysis of the particle dynamics in particle swarm

optimizer, IEEE Transactions on Evolutionary Computing, vol.10, no.3, pp.245-255, Jun. 2006.

13. Zaharie, D., Control of Population Diversity and Adaptation in Differential Evolution Algorithms, In Matousek, D.,

Osmera, P. (eds.), Proc. of MENDEL 2003, 9th International Conference on Soft Computing, Brno, Czech Republic,

pp. 41-46, June 2003.

14. Zaharie D. and Petcu D.: Adaptive Pareto Differential Evolution and its Parallelization, Proc. of 5th International

Conference on Parallel Processing and Applied Mathematics, Czestochowa, Poland, Sept. 2003.

15. Abbass, H., The Self-Adaptive Pareto Differential Evolution Algorithm, In: Proceedings of the 2002 Congress on

Evolutionary Computation (2002) 831-836.

16. Omran, M., Salman, A., and Engelbrecht, A, P., Self-adaptive Differential Evolution, Computational Intelligence And

Security, PT 1, Proceedings Lecture Notes In Artificial Intelligence 3801: 192-199 2005.

17. Brest, J., Greiner, S., Boskovic, B., Mernik, M. and Zumer, V., Self-Adapting Control Parameters in Differential

Evolution: A Comparative Study on Numerical Benchmark Problems, IEEE Transactions on Evolutionary

Computation, Vol. 10, and Issue: 6, Dec. 2006, pp. 646 – 657.

18. Das, S., Konar, A., and Chakraborty, U.K., Two improved differential evolution schemes for faster global search,

ACM-SIGEVO Proceedings of GECCO, Washington D.C., June 2005, pp. 991-998.

19. Price, K., Storn, R., and Lampinen, J., Differential Evolution - A Practical Approach to Global Optimization, Springer,

Berlin, 2005.

20. Lampinen, J., A Bibliography of Differential Evolution Algorithm. Technical Report. Lappeenranta University of

Technology, Department of Information Technology, Laboratory of Information Processing, 1999. Available via

Internet http://www.lut.fi/~jlampine/debiblio.htm

21. Zaharie, D., On the Explorative Power of Differential Evolution, 3rd International Workshop on Symbolic and

Numerical Algorithms on Scientific Computing, SYNASC-2001, Timişoara, Romania, October 2 – 4, 2001.

22. Zaharie, D., Critical Values for the Control Parameters of Differential Evolution Algorithms. In: Matouk, Radek and

Oera, Pavel (eds.) (2002). Proceedings of MENDEL 2002, 8th International Mendel Conference on Soft Computing,

June 5., 2002, Brno, Czech Republic, pp. 62,. Brno University of Technology, Faculty of Mechanical Engineering,

Brno (Czech Republic).

23. Beyer, H. –G, On the Explorative Power of ES/EP-like Algorithms, Technical Report, University of Dortmund, 1998.

24. Efimov, A.V., Modulus of continuity, Encyclopaedia of Mathematics, Springer, 2001.

25. Snyman, J. A., Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and

New Gradient-Based Algorithms. Springer Publishing (2005).

26. Magoulas, G.D., Plagianakos, V.P., and Vrahatis, M.N., Hybrid methods using evolutionary algorithms for on-line

training Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on Volume 3, Page(s):2218 –

2223, 15-19 July 2001.

27. Ranasinghe, M., Mixing Paradigms: A Genetic Operator that Approximates Gradient Descent, Genetic Algorithms and

Genetic Programming at Stanford 2003 (Book of Student Papers from J. R. Koza's Course at Stanford on Genetic

Algorithms and Genetic Programming) Stanford University Bookstore

28. Hahn, W., Theory and Application of Liapunov’s Direct Method, Prentice-Hall, Englewood Cliffs, N.J., 1963.

29. Haddad, W. M. and Chellaboina, V., Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach,

Princeton University Press, 2008.

30. Kirk, W. A. and Sims, B., Handbook of Metric Fixed Point Theory, Kluwer Academic, London, 2001.

31. Fletcher, R., Practical Methods of Optimization, Second ed., John Wiley & Sons, Chichester, 1987.

32. Das, S., Konar, A., and Chakraborty, U. K., Two improved differential evolution schemes for faster global search,

ACM-SIGEVO Proceedings of GECCO, Washington D.C., pp. 991-998, June 2005.

33. Anwal, R. P.: Generalized Functions: Theory and Technique, 2nd ed. Boston, MA: Birkhãuser, 1998.

34. Kuo, B. C., Automatic Control Systems, Prentice-Hall, Englewood Cliffs, NJ, 1987.

35. Vesterstrøm, J. and Thomson, R., A comparative study of differential evolution, particle swarm optimization, and

evolutionary algorithms on numerical benchmark problems, in Proc. Sixth Congress on Evolutionary Computation

(CEC-2004), IEEE Press, 2004.

36. Dasgupta, S., Das, S., Abraham, A. and Biswas, A., Adaptive Computational Chamotaxis in Bacterial Foraging

Optimization – An Analysis, IEEE Transactions on Evolutionary Computation , 2009 (in Press).

37. Clerc, M. and Kennedy, J., The particle swarm-explosion, stability, and convergence in a multidimensional complex

space, IEEE Transactions on Evolutionary Computation 6 (1), 58–73, 2002.

38. Semenov, M. A. and Terkel, D. A., Analysis of Convergence of an Evolutionary Algorithm with Self-Adaptation Using

a Stochastic Lyapunov Function, Evolutionary Computation, 363-379, 2003.

