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Abstract—Orthogonal Frequency Division Multiplexing (OFDM) 
has emerged as very popular wireless transmission technique in 
which digital data bits are transmitted at a high speed in a radio 
environment. But the high peak-to-average power ratio (PAPR) 
is the major setback for OFDM systems demanding expensive 
linear amplifiers with wide dynamic range. In this article, we 
introduce a low-complexity partial transmit sequence (PTS) 
technique for diminishing the PAPR of OFDM systems. The 
computational complexity of the exhaustive search technique for 
PTS increases exponentially with the number of sub-blocks 
present in an OFDM system. So we propose a modified 
Differential Evolution (DE) algorithm with novel mutation, 
crossover as well as parameter adaptation strategies (MDE_pBX) 
for a sub-optimal PTS for PAPR reduction of OFDM systems. 
MDE_pBX is utilized to search for the optimum phase weighting 
factors and extensive simulation studies have been conducted to 
show that MDE_pBX can achieve lower PAPR as compared to 
other significant DE and PSO variants like JADE, SaDE and 
CLPSO. 

Keywords-Peak-to-average power ratio; Partial transmit 
sequence; Differential Evolution; p-best crossover; Parameter 
adaptation 

I. INTRODUCTION 
Orthogonal frequency division multiplexing (OFDM) [1] is 

basically a Multi-Carrier Digital Modulation technique in 
which a transmitted signal (serial digital data stream) is split up 
into multiple parallel data streams, which are modulated onto 
multiple adjacent carriers (subcarriers) within the allotted 
bandwidth. This multiplexing method is renowned for giving 
rise to high-speed digital data transmission. But the major 
defect regarding OFDM systems is the high peak-to-average 
power ratio (PAPR). Many PAPR reduction approaches have 
already been proposed such as clipping [2] and peak 
windowing, block coding [3], scrambling [4], nonlinear 
commanding transform schemes [5,6]. The most effective and 
efficient PAPR reduction method is the partial transmit 
sequence (PTS) approach in which the signal sub-blocks 
obtained by splitting the input data block are multiplied by 
phase weighting factors and then summed up to produce an 
alternative transmit without any loss of information. The phase 
weighting factors should be selected in a way such that the 
ultimate PAPR is minimized. But the computational overhead 
associated with exhaustive search of the ordinary PTS 

technique increases exponentially with number of sub-blocks, 
so the exhaustive search method becomes rigorous, time-
consuming and thus practically unrealizable for large number 
of sub-blocks. 

With the arrival of evolutionary computation techniques 
researchers have opted for designing suitable evolutionary 
algorithms to replace the inefficient exhaustive search method. 
The Differential Evolution algorithm [16, 19] has emerged has 
a very competitive form of evolutionary computing more than a 
decade ago. The computational steps employed by a DE 
algorithm are similar in spirit to any standard Evolutionary 
Algorithm (EA). However, unlike the traditional EAs, DE-
variants perturb the current-generation population members 
with the scaled differences of randomly selected and distinct 
population members. Therefore, no separate probability 
distribution has to be used for generating the offspring. The 
success of DE was demonstrated at the First International 
Contest on Evolutionary Optimization in May 1996, which was 
held in conjunction with the 1996 IEEE International 
Conference on Evolutionary Computation (CEC) [18]. DE 
finished third at the First International Contest on Evolutionary 
Optimization (1st ICEO), which was held in Nagoya, Japan. DE 
turned out to be the best evolutionary algorithm for solving the 
real-valued test function suite of the 1st ICEO (the first two 
places were given to non-evolutionary algorithms, which are 
not universally applicable but solved the test-problems faster 
than DE).  Since the late 1990s, DE started to find several 
significant applications to the optimization problems arising 
from diverse domains of science and engineering. 

In this article, we propose new mutation and crossover 
operators for DE as well as a simple but effective scheme of 
adapting two of its most important control parameters with an 
objective of achieving improved PAPR reduction performance 
in OFDM systems. We shall refer to this new adaptive DE 
algorithm as MDE_pBX (Modified DE with p-best Crossover). 
The MDE_pBX algorithm is applied to search for the optimal 
combination of phase weighting factors so as to reduce the 
PAPR of the OFDM signal. Numerous simulations have been 
done to show that MDE_pBX can bring about better PAPR 
reduction compared to different sub-optimum PTS techniques 
such as Iterative PTS technique (IPTS) and various DE and 
PSO variants, namely an adaptive DE with current-to-pbest/1 
mutation scheme and optional external archive (JADE) [7], 
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Self-Adaptive DE (SaDE) [8] and Comprehensive Learning 
Particle Swarm Optimizer (CLPSO) [9].  

The rest of the paper is organized as follows. Section II 
gives a description of PAPR in OFDM systems and PTS 
scheme. The basic differential evolution algorithm and the 
proposed MDE_pBX algorithm is discussed in sections III and 
IV in details. Sections V and VI describes the MDE_pBX-
based PTS technique and the Iterative PTS (IPTS) technique. 
Section VII compares the computational complexity of 
different sub-optimum PTS techniques. Simulations and results 
are discussed in section VIII and section IX concludes the 
paper.    

II. DESCRIPTION OF PAPR IN OFDM SYSTEM AND PTS 
SCHEME 

A. Definition of Peak-to-average power ratio(PAPR) 
For OFDM system implementation, Inverse Fast Fourier 

Transform (IFFT) is usually being utilized to modulate 
multiple sub-band signals in an OFDM signal. The complex 

modulating (baseband) signal in an OFDM system consisting 
of N subcarriers can be expressed as 
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Figure 1: The structure of an OFDM transmitter with MDE_pBX-based PTS scheme (IDFT stands for Inverse Discrete Fourier Transform)  

 

where max X t( )
2

is the peak power of the OFDM signal and 

E •[ ]  is the average power. Nowadays, most systems are 
dealing with discrete time signals and thus many PAPR 
reduction techniques are concerned with the amplitude of 
samples of X t( ) . 

B. The Partial Transmit Sequence(PTS) scheme   
In the PTS scheme of PAPR reduction, a data block of N 

symbols fed as input is split into disjoint sub-blocks. The 
subcarriers in each sub-block are multiplied by a phase 
weighting factor of that sub-block. The principle structure of 
PTS scheme is shown in Figure 1 as that in [11]. The phase 
weighting factors are chosen in such a manner that the PAPR 
of the entire signal is minimized. So PAPR reduction is 

basically an optimization process. The input data block is 

represented as a vector X
!

= X1,X2,......,XN[ ]T . The vector X is 

segmented into M  separate sub-blocks shown as X
!

= X
!

i

i=1

M

" . 

There is a postulate that the sub-blocks are of equal size whose 
weighted sum combination can be represented as  

                         Z b( ) = bi X
!

i

i=1

M

"                                    (3) 

 Our goal is to search for the optimal phase weighting 

vector b
!

= b1,b2,....,bi[ ] that will minimize the PAPR of Z b( ) . 

 



The optimal phase weighting factor ib can be derived from a 
extensive matching of all possible  

1!Mb sequences. But the exhaustive search will be extremely 
time-consuming and thus we will employ the optimization 
process on the cost function defined as  
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  The amount of PAPR reduction is proportional to the 
number of phase weighting factor. If the number of phase 
weighting factor is large, the number of parallel addition 
processor and the number of phase weighting factor sequences 
are searched to find the optimum combination of phase 
weighting factors will be increased incorporating huge 
complexity in the system. Then we cannot assume that the 
candidate signals are independent in PTS. The correlation 
among candidate signals deteriorates the PAPR reduction 
performance in PTS. The correlation among candidate signals 
is governed by two factors-one is the sub-block partition style 
as described in [6] and the other is the value of phase weighting 
factor set. So it is possible to alter these two factors to produce 
candidate signals with diminished correlation, so as to prevent 
degradation of the PAPR reduction performance.   

In this paper, an innovative sub-blocks partition scheme is 
proposed and its performance is assayed. The scheme is 
somewhat a concatenation of pseudo-random and interleaved 
partition schemes. In the proposed technique, sub-bands in an 
OFDM signal are partitioned into multiple separate sub-blocks 
and signals are assigned randomly in a partial sub-band of each 
sub-block. These partial sub-bands signals are replicated and 
designated to the remaining sub-bands repetitively to yield a 
complete sub-block. 

III.  CLASSICAL DIFFERENTIAL EVOLUTION 
DE is a simple real-coded evolutionary algorithm. It works 
through a simple cycle of stages, which are detailed below. 

 

A. Initialization of the Parameter Vectors 
DE [16, 19] searches for a global optimum point in a D-
dimensional continuous hyperspace. It begins with a 
randomly initiated population of NP D dimensional real-
valued parameter vectors. Each vector, also known as 
genome/chromosome, forms a candidate solution to the 
multi-dimensional optimization problem. We shall denote 
subsequent generations in DE byG = 0,1...,Gmax . Since the 
parameter vectors are likely to be changed over different 
generations, we may adopt the following notation for 
representing the i-th vector of the population at the current 
generation: 

    
!
Xi,G = [x1,i,G, x2,i,G, x3,i,G,....., xD,i,G ].                 (5)                                                

The initial population (atG = 0 ) should cover the entire 
search space as much as possible by uniformly 
randomizing individuals within the search space 

constrained by the prescribed minimum and maximum 
bounds:         !
Xmin = {x1,min, x2,min,..., xD,min} and
!
Xmax = {x1,max, x2,max,..., xD,max} .  

Hence we may initialize the j-th component of the i-th 
vector as: 

x j,i,0 = x j,min + randi, j[0,1]! (x j,max " x j,min ) ,            (6)                                                                                            

where rand is a uniformly distributed number lying within 
the range 0,1[ ]  and is instantiated independently for each 
component of the i-th vector. 

B.   Mutation with Difference Vectors 

After initialization, DE creates a donor vector 
!
Vi,n  

corresponding to each population member or target 
vector

!
Xi,G in the current generation through mutation. 

Five most frequently referred mutation strategies 
implemented in the public-domain DE codes available 
online at http://www.icsi.berkeley.edu/~storn/code.html 
are listed below: 

“DE/rand/1”: !Vi,G =
!
X
r1
i ,G
+F ! (

!
X
r2
i ,n
"
!
X
r3
i ,G
).                   (7) 

“DE/best/1”: 
!
Vi,G =

!
Xbest,G +F ! (

!
X
r1
i ,G
"
!
X
r2
i ,G
).        (8)         

“DE/target-to-best/1”: !
Vi,G =

!
Xi,G +F ! (

!
Xbest,G "

!
Xi,G )+F ! (

!
X
r1
i ,G
"
!
X
r2
i ,G
).    (9)  

“DE/best/2”:  !
Vi,G =

!
Xbest,G +F ! (

!
X
r1
i ,G
"
!
X
r2
i ,G
)+F ! (

!
X
r3
i ,G
"
!
X
r4
i ,G
).      (10) 

“DE/rand/2”:  
!
Vi,G =

!
X
r1
i ,G
+F ! (

!
X
r2
i ,G
"
!
X
r3
i ,G
)+F ! (

!
X
r4
i ,G
"
!
X
r5
i ,G
).         (11)   

The indices ir1 , ir2 , ir3 , ir4 , and ir5 are mutually exclusive 
integers randomly chosen from the range [1, NP], and all 
are different from the index i. These indices are randomly 
generated once for each donor vector. The scaling factor F 
is a positive control parameter for scaling the difference 

vectors. GbestX ,

!
 is the best individual vector with the best 

fitness (i.e. lowest objective function value for 
minimization problem) in the population at generation G.  

C. Crossover 
 

To enhance the potential diversity of the population, a 
crossover operation comes into play after generating the 
donor vector through mutation. The donor vector 
exchanges its components with the target vector 

!
Xi,G  

under this operation to form the trial 
vector

!
Ui,G = [u1,i,G,u2,i,G,u3,i,G,...,uD,i,G ] . In this article we focus 

on the widely used binomial crossover that is performed 



on each of the D variables whenever a randomly 
generated number between 0 and 1 is less than or equal to 
the Cr value. In this case, the number of parameters 
inherited from the donor has a (nearly) binomial 
distribution. The scheme may be outlined as: 

      Giju ,,  =     Gijv ,,  ,   if ( randi, j[0,1) !Cr or j = jrand  

             x j,i,G ,otherwise,                                              (12) 

where, as before, randi, j[0,1) is a uniformly distributed 
random number, which is called anew for each j-th 
component of the i-th parameter vector. 
jrand ! [1, 2,....,D] is a randomly chosen index, which 

ensures that 
!
Ui,G gets at least one component from 

!
Vi,G .  

D. Selection 
The next step of the algorithm calls for selection to 
determine whether the target or the trial vector survives to 
the next generation i.e. at 1+= GG . The selection 
operation is described as:  

  
!
Xi,G+1 =

!
Ui,G,    if  f (

!
Ui,G ) ! f (

!
Xi,G )  

             =
!
Xi,G,    if f (

!
Ui,G )> f (

!
Xi,G ) ,                              (13)   

where f (
!
X) is the objective function to be minimized. 

Note that throughout the article, we shall use the terms 
objective function value and fitness interchangeably. But, 
always for minimization problems, a lower objective 
function value will correspond to higher fitness. 

IV. PROPOSED MDE_PBX ALGORITHM  
In this section, we describe MDE_pBX and discuss the 

various features of the algorithm such as the mutation scheme 
called DE/current-to-gr_best/1, a p-best crossover scheme and 
rules for adapting the control parameters F and Cr in each 
iteration. 

A. DE/current-to-gr_best/1 
DE/current-to-best/1 is one of the widely used mutation 
schemes in DE as it incorporates the useful information of the 
best solution (with highest objective function value for 
maximization problems) resulting in fast convergence by 
guiding the evolutionary search towards a specific point in the 
search space. Due to such exploitative behavior the algorithm 
may lose its global exploration capabilities and converge to a 
locally optimal point in the search space. To avoid such 
difficulties in this article we propose a less greedy and more 
explorative variant of the DE/current-to-best/1 mutation 
strategy termed as DE/current-to-gr_best/1 which utilizes the 
best vector of a dynamic group of q% of the randomly selected 
population members for each target vector. Now the 
population does not get attracted towards a specific point in 
the search space, rather it moves towards different specific 

points and explores the landscape much better. The new 
scheme may be formulated as 

1 2
, , _ , , , ,

( ),i ii G i G gr best G i G r G r G
V X F X X X X= + ! " + "
! ! ! ! ! !

 (14) 

where _ ,gr best GX
!

is the best solution of q % members 

randomly selected from the present population whereas 
1 ,
ir G

X
!

 

and 
2 ,
ir G

X
!

 are two distinct vectors picked up randomly from 

the current population. Under this scheme, the target solutions 
are not always attracted towards the same best position found 
so far by the entire population and this feature is helpful in 
avoiding premature convergence at local optima. 

B. The p-best Crossover 
The crossover operation in MDE_pBX is named p-best 
crossover where for each donor vector, a vector is randomly 
chosen from the p top-ranking individuals (in accordance with 
their objective function values) in the current population and 
then normal binomial crossover is carried out as per equation 
(12) between the donor vector and the randomly selected p-
best vector to produce the trial vector of same index. By 
means of this innovative crossover scheme the information 
contained in the top ranking individuals of the population is  
incorporated into the trial vector resulting in fast convergence.  
The parameter p is reduced in a linear fashion with iterations 
in the following manner: 

               
p = ceil Np
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where Np is the population size, G is the current generation 

number, maxG is the maximum number of generations, 

[1,2,..., ]maxG G= , and ceil y( ) is the ‘ceiling’ function 
returning the lowest integer greater than its argument y. The 
reduction routine of p favors exploration at the beginning of 
the search and exploitation during the later stages by gradually 
reducing the elitist portion of the population, with a randomly 
selected member from where the component mixing of the 
donor vector is allowed for generation of the trial vector. 

C. Parameter Adaptation 
The parameter adaptation schemes in MDE_pBX are guided 
by the knowledge of the successful values of F and Cr that 
were able to generate better offspring (trial vectors) in the last 
generation. 
 
Scale Factor adaptation: At every generation, the scale factor 
Fi of each individual target vector is   independently generated 
as: 

                     ( ,0.1),i mF Cauchy F=                                (16)                                                        

where ( ,0.1)mCauchy F is a random number sampled from a 
Cauchy distribution with location parameter Fm and scale 
parameter 0.1. The value of Fi is regenerated if 0iF !  or 



1iF > . Denote Fsuccess as the set of the successful scale 
factors, so far, of the current generation generating better trial 
vectors that are likely to advance to the next generation. Also 
let 1( )A Gmean F ! is the simple arithmetic mean of all scale 
factors associated with population members in 
generation 1G ! . Location parameter Fm of the Cauchy 
distribution is initialized to be 0.5 and then updated at the end 
of each generation in the following manner: 

       (1 ) ( )m successm F F PowF w F w mean F= ! + " !                 (17a)                                             

The weight factor Fw  is let vary randomly between 0.8 and 1 
in the following way: 
 

              wF = 0.8+ 0.2* rand 0,1( ),                                   (17b)                                                                                         

 where ( )1,0rand  stands for a uniformly distributed random 
number in (0, 1) and meanPow stands for power mean [10] 
given by: 

    ( )
1

( ) / ,
Success

n n
Pow success success

x F

mean F x F
!

= "      (18)                                             
 

with SuccessF denoting the cardinality of the set FSuccess . We 

took n = 1.5 as it gives best results on a wide variety of tested 
problems. Small random perturbations to the weight terms of 
Fm and meanpow puts slightly varying emphasis on the two 
terms each time an F is generated, and improves the 
performance of MDE_pBX as revealed through our parameter 
tuning experiments. 

Crossover probability adaptation: At every generation 
the crossover probability Cri of each individual vector is 
independently   generated   as:  

                    ( ,0.1),i mCr Gaussian Cr=                          (19) 
where ( ,0.1)mGaussian Cr is a random number sampled 
from a Gaussian distribution according with   mean  Crm   and  
standard deviation 0.1. Cri is truncated if it falls outside the 
interval [0, 1]. Denote Crsuccess as the set of all successful 
crossover probabilities Cri ’s  at the current generation. The 
mean of the normal distribution Crm is initialized to be 0.6 and 
then updated at the end of each generation as: 

(1 ) ( ),m successm Cr Cr PowCr w Cr w mean Cr= ! + " !            (20a)                                            
with the weight being uniformly randomly fluctuating between 
0.9 and 1:  
                   ( )1,0*1.09.0 randwCr += .                     (20b)                                           
 The power mean is calculated as: 
                               

( )
1

( ) / ,
Success

n n
Pow success success

x Cr

mean Cr x Cr
!

= "      (21)                                               
 

 where SuccessCr denotes the cardinality of the set CrSuccess . 
We took n = 1.5 here also. 

D. Explanation of Parameter Adaptation 
Earlier theoretical studies on DE [14, 15] have indicated that 
the scale factor F has a big role in controlling the population 
diversity and the explorative power of DE. During the 
adaptation of Fm the usage of Power mean leads to higher 
value of Fm that accounts for larger perturbation to the target 
vectors, thus avoiding premature convergence at local optima. 
The essence of Fsuccess is that, it memorizes the successful scale 
factors in the current generation, thereby glorifying the chance 
of creating better donor vectors as more and more target 
vectors are processed. Fm is used as a location parameter of 
Cauchy distribution, which diversifies the values of F more as 
compared to the traditional normal distribution. The fact that 
the Cauchy distribution has a far wider tail than traditional 
Gaussian distribution is beneficial when the global optima is 
far away from the current search point as the values of F taken 
from the tail region give  sufficient perturbation so that 
premature convergence can be avoided. The adaptation of Crm 
is also based on the record of recent successful crossover 
probabilities and use them to guide the generation of new Cri 
’s. So, for the adaptation of Crm the usage of Crsuccess again 
records the successful Cr values, thus generates better 
individuals as offspring, which are more likely to survive. A 
normal distribution with mean Crm and standard deviation of 
0.1 is used to generate the Cr values. The usage of power 
mean instead of arithmetic mean in adaptation of Crm leads to 
higher values of Cr, which eliminates the implicit bias of Cr 
towards small values during its self-adaptation. Here, the 
Cauchy distribution is avoided and Gaussian distribution is 
selected because the long tail property of the former is not 
needed in case of the crossover probability adaptation. If the 
Cauchy distribution were used, the long tail property of the 
Cauchy distribution may lead to excessive higher values of Cr, 
which would have to be truncated to unity. Consequently, 
values of Cr would become independent of the Cauchy 
distribution. But the usage of the Gaussian distribution 
provides the opportunity to generate most of the Cr values 
within unity because of its short tail property.  

V. MDE_PBX-BASED SUB-OPTIMAL PTS TECHNIQUE  
 

In PTS, the signal sub-blocks are phase-shifted by distinct 
phase weight factors to produce multiple candidate signals and 
then combined so as to choose the optimal PAPR signal. In this 
section, the searching sequence of PTS is worked out as a 
b!M dimensions combinatorial optimization problem. The 
total search space covering the rotational phase weight factors 
or angles is divided into identically spaced angles with a 
particular phase increment. These discrete angles are termed as 
trial angles. The total discrete angle space 0[ 2! ]  is 

discredited with a 10! increment. Since the MDE_pBX 
algorithm operates on a real-valued fitness space, i.e. the 
particle positions representing the phase weight factors or 
angles are real numbers. So there should be a conversion 
method to transform the real valued positions to the positive 
integer valued angles. We propose a simple conversion scheme 
in which the modulus of the real valued position is taken and 



truncating the real valued position to the nearest integer value. 
For the contestant algorithms (JADE, SaDE and CLPSO) the 
same conversion scheme is being applied so that any difference 
in their performance may be attributed to their internal search 
operators only. 

VI. ITERATIVE BASED PTS (IPTS) TECHNIQUE 
An iterative PTS (IPTS) technique is another popular sub-
optimum PTS technique defined in [17]. Here the phase 
weighting factors are considered as binary quantities. In the 
first step, ib is assumed to have a value 1 for all i and 
calculate the PAPR of the combined OFDM signal as shown 
in (4). In the next step we will invert the first phase weighting 
factor 1b and recalculate the PAPR value with .01 =b If the 
new PAPR value is less than the previous one, the current 
value of 1b is retained as a component of the final sequence, 
otherwise the previous value is retained. The search 
complexity in IPTS reduces significantly since only binary 
phase weighting factors are considered but at the cost of 
average PAPR performance. The computational complexity of 
IPTS can be shown to beO M( ) , where M is the number of 
sub-blocks.    

VII. COMPUTATIONAL COMPLEXITY  
While calculating the computational complexity of the 
proposed MDE_pBX technique, the multiplications and the 
generation of random number should be considered as the 
required computations. The computational complexity of the 
optimal PTS technique is exponential with the number of sub-
blocks of the orderO bM!1( ) . With the population size pP and 

the allotted maximum number of generations Gn the 
computational complexity of the MDE_pBX technique is 
O PpGn( ) . Now both O Pp( )  and O Gn( ) can be assumed to 
possess a linear relationship with the dimensionality of the 
problem associated with M number of sub-blocks. As a result, 
on the whole, the computational complexity of the MDE_pBX-
based PTS technique isO M 2( ) . So a large value of M results 
in a more complicated search landscape and demands higher 
values of pP and nG . Table 1 shows a comparison of the 
computational complexity between OPTS and sub-OPTS 
(IPTS, CLPSO-PTS, SaDE-PTS, JADE-PTS and MDE_pBX-
PTS) along with the PAPR values calculated and averaged over 
25 independent runs when CCDF =10!4 dB( )  (CCDF is 
defined in section VIII) under the conditions as stated in Figure 
4. 

 
 
 
 
 
 
 

 
Table 1: Comparison of computational complexity and PAPR 

of OPTS and other sub-OPTS techniques 

Method 
Total 

computational 
complexity 

PAPR CCDF =10!4dB( )
 

OPTS O bM!1( )  6.25 

IPTS O M( )  9 

CLPSO-PTS O M 2( )  8.8 

SaDE-PTS O M 2( )  7 

JADE-PTS O M 2( )  6.8 

MDE_pBX-
PTS 

O M 2( )  6.5 

 

A close scrutiny of Table 1 reveals that among the sub-OPTS 
techniques, the computational cost associated with IPTS is the 
least but its PAPR performance is poor as compared to the 
other sub-OPTS techniques. The best PAPR performance is 
achieved by MDE_pBX but not at the cost of incurring huge 
computational overhead as compared to IPTS. So MDE_pBX-
PTS is able to achieve a proper trade-off between PAPR 
reduction and computational complexity associated with 
OFDM systems to some extent.   

VIII. EXPERIMENTAL RESULTS 
Since PAPR is a random variable, we have to calculate its 
statistical properties by means of a complementary cumulative 
distribution function (CCDF). CCDF [12,13] of the PAPR 
denotes the probability that the PAPR of a data block exceeds a 
given threshold. CCDF is the most frequently used 
performance metric for PAPR reduction methods. The 
modulation type used in this experiment is Quadrature Phase 
Shift Keying (QPSK) with N =128 subcarriers. The phase 
weighting factors b = [0 2! ] have been used. 10000 random 
OFDM frames have been generated in order to generate the 
CCDF of the PAPR. The sampling rates for an accurate PAPR 
need to be increased by four times. The CDF of the amplitude 
of a signal sample is given byCDF =1! exp(PAPR0 ) . As a 
performance metric, the parameter of CCDF is defined as: 

             CCDF = Pr PAPR > PAPR0( )                         (22) 

Pr (PAPR > PAPR0 ) =1!Pr PAPR " PAPR0( )            (23) 

So, CCDF =1! (1! exp(!PAPR0 ))
N                           (24) 

There is an assumption in the above equation that the N time 
domain signal samples are mutually independent and 
uncorrelated. But this assumption is violated when 
oversampling is applied. Also, this equation does not hold for 
a small number of subcarriers due to violation of Gaussian 
assumption. The population size is kept as the same value 
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( Pp = 20 ) for all the algorithms for a relative fair comparison. 
The parameter q in the mutation scheme DE/target-to-
gr_best/1 of MDE_pBX is kept as 1/4th of the population size. 
The reason for setting such a value for the group size q is that 
if q is on par with population size, the probability that the best 
of randomly chosen q% vectors is similar to the globally best 
vector of the entire population will be high and the proposed 
mutation scheme DE/current-to-gr_best/1 basically becomes 
identical to the DE/current-to-best/1 scheme. This drives most 
of the vectors towards a specific point in the search space 
resulting in premature convergence. The parameter p in p-best 
crossover is linearly decreased with generations as shown in 
equation (15). For the contestant algorithms, we follow the 
parameter settings in the original paper of SaDE and CLPSO. 
For JADE, we set the parameters to be fixed: p=0.05 and 
c=0.1. For all the competitor algorithms, the control 
parameters are kept at their optimal values so that a fair 
comparison is made. All the performances are calculated and 
averaged over 25 independent runs. In Figure 2, results of the 
CCDF of the PAPR for MDE_pBX are simulated for the 
OFDM system with N = 256 subcarriers, in which M = 16 
sub-block employing random partition and the phase weight 
factor b uniformly distributed random variable are used for 
PTS. As we can see that the CCDF of the PAPR is gradually 
promoted upon increasing the numbers of generations due to 
the limited phase weighting factor. Upon increasing the 
number of generations, CCDF of the PAPR is also improved. 
As evident from figure 2, MDE_pBX is able to attain OPTS 
technique performance under relatively small number of 
generations (Gn = 30 ).  

 

 
 
Figure 2: CCDF of MDE_pBX-based PTS technique for 
differentGn , when N = 256,M =16 and b = 4.  
 
Figure 3 compares the performance of the MDE_pBX-based 
PTS technique for different values of M. The value of M takes 
four values 2, 4, 8 and 16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 3: CCDF of the PAPR with the PTS technique searched by 

MDE_pBX technique when N = 128, M = 2, 4, 8 and 16. 
 
It is evident from Figure 2 that the performance of 
MDE_pBX-based PTS technique is better for larger M since 
larger numbers of particles are searched for larger M in every 
update of the phase weighting factors. As the number of sub-
blocks and the set of phase weighting factor are increased, the 
performance of the PAPR reduction becomes better. Figure 4 
shows the CCDFs of the PAPR of QPSK-modulated OFDM 
signals in OPTS and sub-OPTS (i.e. CLPSO-PTS, SaDE-PTS, 
JADE-PTS and MDE_pBX-PTS), respectively, for M = 4 and 
b = 2 (M is the number of sub-blocks). Clearly, the PAPR 
reduction performance of MDE_pBX-PTS is better than the 
rest of the algorithms and the performance for PAPR reduction 
of the proposed MDE_pBX-PTS scheme is almost same as 
that of the near optimal PTS. 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 4: CCDFs of OPTS, sub-OPTS with 128 subcarriers, QPSK 
modulation and over sampling factor L = 4. 
 



In other words, we can say that the MDE_pBX-based sub-
optimal PTS technique is able to outperform the other sub-
optimal PTS techniques based on JADE, SaDE and CLPSO 
and capable of attaining almost optimal PTS technique. For 
instance, in Figure 4 given that CCDF =10!4 , the PAPR of 
the normal OFDM is near about 11 dB, and those of CLPSO-
PTS, SaDE-PTS, JADE-PTS, MDE_pBX-PTS and OPTS are 
near about 8.8, 7, 6.8, 6.5, and 6.25 dB for M = 4, 
respectively. The superior performance of MDE_pBX-PTS 
can be attributed to the modifications in different algorithmic 
components of MDE_pBX, namely the less greedy and 
explorative mutation scheme DE/current-to-gr_best/1 to avoid 
premature convergence, innovative parameter adaptation 
schemes for F and Cr guided by the knowledge of the 
successful values of F and Cr in the last generation to increase 
the robustness of the proposed algorithm and the novel 
exploitative p-best crossover scheme to improve the 
convergence speed by incorporating the useful genetic 
information contained in the top-ranking individuals into the 
trial vector. It is to be noted that performance of MDE_pBX is 
not highly sensitive to the parameters p and q.  

IX. CONCLUSIONS 
Comparisons of the PAPR reduction performance for different 
sub-optimal PTS searching strategies based on evolutionary 
computation techniques have been considered in this study. In 
this paper, we propose a novel PTS based on MDE_pBX 
which is applied to search the optimal combination of phase 
weighting factors, which can achieve the OFDM system with 
low PAPR and does not incur huge computational overhead. 
The proposed three algorithmic components (DE/target-to-
gr_best/1, p-best crossover and parameter adaptation) in 
MDE_pBX do not incorporate any additional computational 
cost because they are realized based on simple DE operators. 
The performance of the proposed scheme MDE_pBX-PTS is 
compared with IPTS and other sub-optimum PTS techniques 
based on JADE, SaDE and CLPSO. The complexity of the 
proposed technique is approximatelyO M 2( ) , and it is evident 

from Section VIII that its performance is significantly better 
and more robust compared to the other compared evolutionary 
computation techniques. For many cases we have verified that 
the proposed MDE_pBX-based PTS technique has almost 
identical performance to that of the optimum PTS in the range 
of PAPR of most practical interest.  
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