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Abstract- Differential evolution (DE) is a powerful yet 

simple evolutionary algorithm for optimizing real valued 

optimization problems. Traditional investigations with 

differential evolution have used a single mutation 

operator. Using a variety of mutation operators that can 

be integrated during evolution could hold the potential to 

generate a better solution with less computational effort. 

In view of this, in this paper a mixed mutation strategy 

which uses the concept of evolutionary game theory is 

proposed to integrate basic differential evolution 

mutation and quadratic interpolation to generate a new 

solution. Throughout this paper we refer this new 

algorithm as, differential evolution with mixed mutation 

strategy (MSDE). The performance of proposed 

algorithm is investigated and compared with basic 

differential evolution. The experiments conducted shows 

that proposed algorithm outperform the basic DE 

algorithm in all the benchmark problems. 

  

Keywords:  differential evolution, mutation operator, 

mixed strategy.  

 

1. Introduction 
 
 Differential evolution, proposed by Storn and Price in 

1995 [2] is a relatively new optimization technique 

compared to evolutionary algorithms (EAs) such as 

Genetic Algorithms, Evolutionary Strategy, and 

Evolutionary Programming.  Within a short span of 

around thirteen years, DE has emerged as one of the 

most popular techniques for solving optimization 

problems. However, it has been observed that the 

convergence rate of DE do not meet the expectations 

in cases of highly multimodal problems. Several 

variants of DE have been proposed to improve its 

performance. Some of the recent versions include 

greedy random strategy [5], preferential mutation 

operator [6], self adaptive DE [7], Trigonometric DE 

[12], opposition based DE [11], neighborhood search 

DE [14], Parent Centric DE [13] etc. several recent 

versions of DE can be found in [15]. 

In all the above mentioned versions of DE, a single 

mutation operation is used. It is quite natural to think 

that a DE having more than one mutation operation 

may work better than the one having a single mutation 

operation. In this paper we propose a DE inspired by 

the basic concepts of game theory. 

In classical game theory, we have a set of players and 

a set of strategies. Each player tries to improve its 

performance by selecting a strategy from the given set 

and the value of the game changes accordingly. 

Based on this analogy, we refer to the particles of the 

DE as players and the mutation operation as the 

strategy. The basic DE having a single mutation 

operation (single strategy) is called a pure strategy DE 

(PSDE) and the DE having more than one mutation 

operation (multiple strategies) is called mixed strategy 

DE (MSDE.  

In this research, we propose an MSDE having a set of 

two strategies or a set of two mutation operations for 

solving unconstrained global optimization problems. 

The concept of mixed strategies is not new to the field 

of EA’s [8, 9], however, to the best of our knowledge 

it has not been used in DE. 

The remainder of the paper is structured as follows. 

Section 2 describes the basics Differential Evolution. 

Section 3 presents the proposed MSDE. Experimental 

setting is given in Section 4. Benchmark problems are 

listed in Section 5. Section 6 provides comparisons of 

results. Finally the paper is concluded in Section 7.      

 

2. Differential Evolution (DE) 
 
Throughout the present study we shall follow 

DE/rand/1/bin version of DE and shall refer to it as 

basic version. This particular scheme is briefly 

described as follows:  

DE starts with a population of NP candidate solutions: 

Xi,G, i = 1, . . . ,NP, where the index i denotes the 

population and G denotes the generation to which the 

population belongs. The three main operators of DE 

are mutation, crossover and selection. 

  Mutation: The mutation operation of DE applies the 

vector differentials between the existing population 

members for determining both the degree and 

direction of perturbation applied to the individual 

subject of the mutation operation. The mutation 

process at each generation begins by randomly 

selecting three individuals {r1, r2, r3} in the population 

set of (say) NP elements. The i
th 

perturbed individual, 

Vi,G+1, is generated based on the three chosen 

individuals as follows: 

           Vi,G+1 = Xr3,G + F * (Xr1,G − Xr2,G)                  (1)                                                  

Where, i = 1. . . NP, r1, r2, r3 ∈ {1. . . NP} are 

randomly selected such that  r1 ≠  r2  ≠  r3  ≠  i,  

F is the control parameter such that F ∈ [0, 1+]. 



     Crossover: once the mutant vector is generated, the 

perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1), 

and the current population member, Xi,G = (x1,i,G, . . . , 

xn,i,G), are then subject to the crossover operation, that 

finally generates the population of candidates, or 

“trial” vectors,Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1), as 

follows: 
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Where, j = 1. . . n, k ∈ {1, . . . , n} is a random 

parameter’s index, chosen once for each i.  

The crossover rate, Cr ∈ [0, 1], is set by the user. 

  Selection: The selection scheme of DE also differs 

from that of other EAs. The population for the next 

generation is selected from the individual in current 

population and its corresponding trial vector according 

to the following rule: 
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Thus, each individual of the temporary (trial) 

population is compared with its counterpart in the 

current population. The one with the lower objective 

function value will survive from the tournament 

selection to the population of the next generation. As a 

result, all the individuals of the next generation are as 

good as or better than their counterparts in the current 

generation. In DE trial vector is not compared against 

all the individuals in the current generation, but only 

against one individual, its counterpart, in the current 

generation. 

 

3. Proposed Algorithm 
 

In this section we describe the proposed modified 

version, MSDE, which uses the concept of 

evolutionary game theory [10]. The individuals are 

regarded as players in an artificial evolutionary game 

applying different mutation operators to generate 

offspring. This is in contrast with the basic DE, where 

all the individuals are subject to a single mutation 

operator. In MSDE, for every individual of the 

population may select any of the two strategies 

provided to it in order to produce a perturbed (mutant) 

vector Vi,G+1. 

A single mutation operator is called a pure strategy in 

the terms of game theory. A strategy profile, vector  

is a collection pure strategies such 

that ( )1,...,p p pα=
r

, where pi is the pure strategy 

used by individual i. The strategies taken in the 

present study are p1 and p2, where p1 denotes the usual 

mutation operation given in equation (1) and p2 

denotes the quadratic interpolation. Mathematical 

definitions of the strategies are given in Table 4. 

The second strategy p2 denotes quadratic interpolation, 

which determines the point of minima of the quadratic 

curve passing through three selected points. The 

symbols have the usual meaning as described in the 

previous section. There is no particular rationale for 

choosing quadratic interpolation as the second strategy 

except that it is a well known gradient free, direct 

search optimization method and has given good 

results in several cases [16], [17].  

At each generation, each individual chooses a 

mutation operator from its strategy set based on a 

probability distribution. This distribution over the set 

of pure strategies available to an individual is called 

the mixed strategy of individual i. and is represented 

by a vector ( )1
( ),..., ( )

i i i
p pβλ λ λ=

r

, where β(=2 in 

our case) is the number of strategies, and ( )i aλ  is 

the probability of individual i applying pure strategy a 

in mutation. To each individual a payoff is assigned 

according to its performance using particular mutation 

strategy. An individual can adjust its mixed strategy 

based on the payoffs of strategies. Usually, the 

strategy with a better payoff will be preferred with a 

higher probability in the next generation. 

 

The procedure of this algorithm is outlined as follows: 

Step1:  Determine the initial set S using random 

number generator and initially assign mixed strategy 

as 

( )1 1( ), ( ) (0.5,0.5)i i ip pλ λ λ= =
r

. 

Step 2:    Calculate the objective function value f(Xi)     

                for all Xi. 

Step3:     Set i=0. 

Step4:     i=i+1; 

Step5:   Target vector Xi (parent vector) choose 

strategy (mutation operator) according to 

probability distribution iλ . If probability of 

pure strategy p1 is greater than the 

probability of strategy p2 then go to step 6 

else go to step 7. 

Step6:      Select three distinct points from population 

and generate perturbed individual Vi using    

equation (1) and go to step 8. 

Step7:    Select one best point and other two distinct 

points from population and generate 

perturbed individual Vi by quadratic 

interpolation. 

Step8:    Recombine the each target vector Xi with 

perturbed individual generated in step 6 or 

7 to generate a trial vector Ui using 

equation (2). 



Step9:   Check whether each variable of the trial 

vector is within range. If not keep it within 

range using ui,j =2* xmin,j - ui,j ,if ui,j < xmin,j 

and ui,j =2* xmax,j - ui,j , if ui,j> xmax,j, 

otherwise go to step 10. 

Step10:      Calculate the objective function value for  

                 vector Ui. 

Step11:   Choose better of the two (function value at 

target and trial point) using equation (3) for 

next generation. 

Step12:     If the target vector Xi uses strategy pα, 

where α=1, 2 and new point survive in next 

generation (G+1) then 

( ) ( ) ( )( )1 1G G G

i i i
p p pα α αλ λ λ γ+ = + −

 ( ) ( ) ( )1G G G

i i i
p p pβ β βλ λ λ γ β α+ = − ≠     

                Otherwise   

                    ( ) ( ) ( )1G G G

i i ip p pα α αλ λ λ γ+ = −             

( ) ( ) ( )1G G G

i i ip p pβ β βλ λ λ γ β α+ = + ≠

, where γ we have taken 1/3 [8]. 

Step13:   If i<population size then go to step4 else go 

to step14. 

Step14:   Check whether convergence criterion is met.  

                If yes, stop; otherwise go to step 3. 
 

4. Experimental Setup 
 
In order to make a fair comparison of MSDE and 

basic DE, we have used C++ rand ( ) function to 

generate initial population for both the algorithms. 

The number of individuals in the population is taken a 

fixed quantity, 100. Values of F scale outside the 

range of 0.4 to 1.2 are rarely effective, so F=0.5 is 

usually a good initial choice. In general Cr should be 

as large as possible to speedup the convergence so in 

this study we have taken Cr =0.33. All the algorithms 

are executed on a PIV PC, using DEV C++, thirty 

times for each problem. In every case, a run was 

terminated when the function values of all points in 

population S were identical to an accuracy of five 

decimal places, i.e., 
5

max min 10f f ε −− ≤ =  or 

when the maximum number of function evaluations 

(NFE =10
6
) was reached. 

 

5. Benchmark problems 

 
The performance of the proposed algorithm is tested 

on a set of five benchmark problems taken from 

literature [11]. All the functions are multimodal in 

nature. Except for functions f2 and f5, which are of 

dimensions 4 and 2 respectively, the remaining test 

problems are scalable and are tested for dimensions 

10, 20 and 50. Mathematical models of the problems 

are given in the Appendix. 

 

6. Numerical results and comparisons 

 

6.1 Comparison between DE and MSDE 

 
This section compares MSDE with the basic DE 

algorithm. Table 1 gives average fitness of function 

values, standard deviation, t- values and average error 

are listed. Average error is defined as the difference 

between the true global optimum value and the value 

obtained by the algorithm. Table 2 provides number of 

function evaluations (NFE) and improvement in term 

of number of functions evaluation. In Table 3, average 

time of execution of algorithms is given. As it is clear 

from the Table 1 that in term of fitness function value 

and standard deviation both the algorithms give more 

or less similar results although in some cases MSDE 

performs slightly better than classical DE. On the 

basis of t-values, last column of the Table 1, we 

conclude that there is a significant difference between 

both the algorithms at 5% level of significance. The 

superior performance of the proposed MSDE is more 

evident from Table 2, which gives the average number 

of function evaluations. From Table 2 we can see that 

MSDE takes less number of function evaluations to 

achieve the required fitness in comparison to the basic 

DE in all cases except to noisy function (f3), in which 

both the algorithms approach to the maximum number 

of function evaluation (NFE=10
6
). In term of 

improvement in number of function evaluation MSDE 

reduces the number of function evaluation up to 77% 

for function f4 of dimension 10. If we talk about 

overall reduction in number of function evaluation, it 

is more than of 50%. But for function f3, which is a 

noisy function, in term of function evaluation there is 

no improvement, both algorithms takes maximum 

number of function evaluation. From Table 3, it can 

be seen that MSDE takes less run time in comparison 

to basic DE but in case of function f3, where number of 

function evaluation is same, MSDE takes more time 

than to basic DE. This behavior of MSDE is quite 

expected because it spends time in updating the 

probabilities and also because the evaluation of 

second strategy p2 takes more time in comparison to 

the usual mutation operator. Performance curves 

(convergence graphs) of few selected functions are 

given in Figures 1(a) – 1(d). From these illustrations, 

it is evident that the convergence of proposed 

algorithm is faster than basic DE. The performance of 

MSDE is shown further in Figures 2 and 3 with 

respect to function f1 increasing its dimension up to 



200 variables. Figure 2 depicts that with the increase 

of time the fitness function value converges more 

rapidly in case of MSDE in comparison to basic DE. 

In Figure 3 we illustrate the effect on fitness function 

value with the increase in dimension. From the 

illustration it can be seen that the fitness remains 

almost consistent for MSDE when the dimension is 

increased, where as for basic DE, the fitness decreases 

with the increase in dimension.  

 

6.2 Comparisons between MSDE and other 

modified versions of differential evolution. 

 
The performance of the proposed MSDE is further 

compared with two recent versions of DE; opposition 

based population initialization DE, ODE [11] and 

trigonometric mutation differential evolution, TDE 

[12]. Both the algorithms have reported superior 

performance over the basic DE. The results obtained 

are summarized in Tables 5 and 6. In Table 5, the 

results of MSDE and ODE are compared for average 

number of function evaluations. For ODE, we have 

taken the results as mentioned in [11]. It is clear from 

the Table 5 that MSDE takes less number of function 

evaluations except for the function f2.to achieve the 

accuracy given in last column. Improvement column 

shows that there is an improvement up to 87% if we 

talk for overall improvement it is 45%. In Table 6, we 

show the comparison of MSDE with TDE. Because 

the data for comparison purpose is not given in [12], 

so we have taken the same parameter setting as given 

in [12] and run TDE thirty times for the function f1 for 

different dimension. Mean fitness value as well as 

number of function evaluations obtained by MSDE is 

better than TDE in all cases. 

 

 

6.3 Sensitivity analysis of parameter γ 

 
The parameter γ plays a crucial role in the 

performance of the proposed MSDE algorithm. It acts 

like a weighting parameter defined by the user at the 

beginning of the program. In the present study we 

recorded the performance of γ for various values 

between 0 and 1. For the sake of brevity, we are 

giving the numerical results for five different values of 

γ viz. 0.001, 0.1, 0.25, 0.33 and 0.95 in terms of 

fitness function, standard deviation and number of 

functions evaluations (NFE). For scalable problems 

we compared the results for dimension 20. The results 

for different values of γ are given in Table 7. 

Empirical analysis of results shows that smaller values 

of γ results in slower convergence thereby increasing 

the number of functions evaluations. Values between 

0.25 to 0.95 are most suited for the optimization 

problems taken in the present study. We have 

considered the value of γ as 0.33 for all the numerical 

test functions taken in the present study. 

 

7. Discussion and conclusions 
 

In this paper we proposed a modified version of basic 

DE called MSDE by incorporating a mixed mutation 

strategy. The simulation of results showed that the 

proposed algorithm is quite competent for solving 

problems of different dimensions in less time and less 

number of function evaluations without compromising 

with the quality of solution. We have also compared 

our results with other two algorithms ODE and TDE 

which showed that mixed mutation strategy is 

beneficial in comparison to single strategy. The set of 

problems considered though small and limited show 

the promising nature of MSDE. One apparent 

drawback of proposed MSDE is that for noisy 

functions like f3 it takes more time than the basic DE, 

although the number of function evaluation is same. 

However, we would like to maintain that the work is 

still in the preliminary stages and making any concrete 

conclusion about it do not sound justified. In this 

paper we have taken only two strategies we intend to 

work with more strategies in future and shall apply it 

for more complex problems and compare its 

performance with other versions of DE and with other 

optimization algorithms. The concept of mixed 

strategy can be applied to population generation and 

crossover rates also. 

 

 

 

 

 

 

 

           

 

 

 

 

 

 

 



Table 1: Mean fitness, standard deviation of functions in 30 runs and t-valve. 

Fun. Dim. Mean fitness (Std) Average error t-value 

DE MSDE DE MSDE 

f1 

10 4.89922e-006 

(9.3006e-007) 

3.65155e-007 

(4.20151e-007) 

4.89922e-006 3.65155e-007 

23.92 

20 1.02463e-005 

(2.00048e-006) 

3.01699e-006 

(1.35368e-006) 

1.02463e-005 3.01699e-006 

16.12 

50 2.31386e-005 

(2.21348e-006) 

6.72181e-006 

(1.04039e-006) 

2.31386e-005 6.72181e-006 

36.16 

f2 

4 4.5118e-008 

(2.32542e-008) 

7.83712e-010 

(1.15383e-009) 

4.5118e-008 7.83712e-010 

10.25 

f3 

10 0.000120068 

(4.75295e-005) 

1.77752e-005 

(1.22154e-005) 

0.000120068 1.77752e-005 
11.23 

20 0.000803444 

(0.000154331) 

0.000121088 

(4.24884e-005) 

0.000803444 0.000121088 
22.96 

50 0.00692452 

(0.00125875) 

0.00043024 

(0.000126203) 

0.0003418 0.00002384 
27.65 

f4 

10 9.48435e-007 

(3.33338e-007) 

5.85615e-008 

(4.37959e-008) 

9.48435e-007 5.85615e-008 
14.25 

20 3.68394e-006 

(9.27743e-007) 

5.40822e-007 

(2.69767e-007) 

3.68394e-006 5.40822e-007 
17.52 

50 9.66678e-006 

(1.00454e-006) 

1.69896e-006 

(4.23073e-007) 

9.66678e-006 1.69896e-006 

39.36 

f5 

2 -1.03163 

(7.93442e-009) 

-1.03163 

(1.28681e-014) 

1.55038e-006 0.000268453 

     0.00 

 

             Table 2: Number of functions evaluation,             Table 3: Average time (sec) in 30 runs. 

             % improvement of functions in 30 runs. 

Fun. Dim. 
No of function Eva. % 

Improve

ment DE MSDE 

f1 

10 31040 14350 53.76 

20 57830 20390 64.74 

50 154490 39260 74.58 

f2 4 76160 58780 22.82 

f3 

10 1e+006 1e+006 0.00 

20 1e+006 1e+006 0.00 

50 1e+006 1e+006 0.00 

f4 

10 60880 13980 77.03 

20 52690 16990 67.75 

50 121930 30080 75.33 

f5 2 7190 2400 66.62 

 

    Table 4: Strategies used in the proposed algorithm. 

 

Fun

. 

Dim. Average Time 

(Sec) 

DE MSDE 

f1 

10 1.3 1.1 

20 3.1 2.9 

50 20.1 17.8       

f2 4 1.9 2.0 

f3 

10 25 86.4       

20 49.7 176.1 

50 134.2  287.1 

f4 

10 1.7 1.5 

20 2.9 3.8 

50 16.9 14.9       

f5 2 0.1 0.1 

Strategies 

used 

Definition  

P1 Xr3,G + F * (Xr1,G − Xr2,G)   
 

P2 
 

 



 
 

Fig 1(a): Performance curves of DE vs. MSDE for 

function f1 ,  dimension 20. 

  

 
 

Fig 1(c): Performance curves of DE vs. MSDE for 

function f4, dimension 20. 

 

 
 

Fig 2: Fitness Vs time for function f1 for 200 Dim. 

 
 

Fig 1(b): Performance curves of DE vs. MSDE for 

function f1, dimension 50. 

 

 
 

Fig 1(d): Performance curves of DE vs. MSDE for 

function f5 

 

 
 

Fig 3 Fitness Vs dimension for function f1. 
 

 

 

 

 

 



Table 5: Average number of functions evaluation in 30 runs and % improvement. 

Fun. Dim. 
No of function Eva. % 

Improvement 

To achieve  

Accuracy[11] ODE[11] MSDE 

f1 30 51619 12500 75.78411 10
-1

 

f2 4 7959 22890 0.00 10
-1

 

f3 30 24248 19040 21.47806 10
-1

 

f4 30 53311 6660 87.50727 10
-1

 

f5 2 5155 2740 46.84772 10
-7

 

    

 Table 6: Mean fitness, standard deviation and average of functions evaluations in 30 runs for function f1. 

 
     Table 7: Sensitivity of parameter γ 

Fun.  γ= .001 γ= .1 γ= .25 γ= .33 γ= .95 

f1 

Dim 

20 

Fitness 3.29362e-006 2.5314e-006 3.14209e-006 3.01699e-006 2.94767e-006 

Std. 6.17117e-007 4.80274e-007 8.58226e-007 1.35368e-006 9.79393e-007 

NFE 21820 21900 21420 20390 20490 

f2 

Dim 

4 

Fitness 1.58156e-009 5.98808e-010 1.17071e-009 7.83712e-010 9.45272e-010 

Std. 2.08799e-009 1.44467e-009 1.13281e-009 1.15383e-009 1.00746e-009 

NFE 63130 55960 53030 58780 49760 

f3 

Dim 

20 

Fitness 0.000126695 0.000152264 0.0001191 0.000121088 1.16693e-005 

Std. 0.000114664 0.000130133 0.00011491 4.24884e-005 0.000383002 

NFE 1000000 1000000 1000000 1000000 1000000 

f4 

Dim 

20 

Fitness 4.30757e-007 4.21027e-007 4.65772e-007 5.40822e-007 6.02965e-007 

Std. 1.9568e-007 1.42966e-007 1.55814e-007 2.69767e-007 2.87743e-007 

NFE 17920 17280 16970 16990 16360 

f5  

Dim 

2 

Fitness -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 

Std. 2.68149e-014 9.85413e-015 1.87432e-014 1.28681e-014 1.6407e-014 

NFE 2960 2510 2750 2400 2670 
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Appendix 
 

1.  Ackley’s function: 

.    ( )
n n

2

1 i i

i 1 i 1

( ) 20*exp .2 1/n x exp 1/n cos 2 x 20f X eπ
= =

   
= − − − + +       

∑ ∑  ,    With 32 32
i

x− ≤ ≤ ,   min ( )1 0,...,0 0f =  

               It is a multimodal function. the presence of an exponential term makes its surface covered with several  

                local minima. 

2. Colville function: 

( ) 2 2 2 2 2 2 2 2

2 2 1 1 4 3 3 2 4 2 4100( ) (1 ) 90( ) (1 ) 10.1(( 1) ( 1) ) 19.8( 1)( 1)f x x x x x x x x x x x= − + − + − + − + − + − + − −         

  

With 10 10
i

x− ≤ ≤ , min ( )2
1,1,1,1 0f =

 
It’s a Unimodal function. Its global optimum functions resides inside a long, narrow, and parabolic-shaped 

flat valley. 

3. Quartic  function: 

( ) [ )4

3

1

0,1
n

i

i

f x ix random
=

= +∑  With 1.28 1.28
i

x− ≤ ≤ , min ( )3 0,...,0 0f =
     

It is a noisy function, 

constructed by adding a uniformly distributed random noise to a quartic function. Due to the presence of 

noise the global optimum keeps on shifting from one position to another.  

4. Griewenk function: 

( ) 2

4

1 1

1
cos( ) 1

4000

nn
i

i

i i

x
f x x

i= =

= − +∑ ∏  With 600 600
i

x− ≤ ≤ , min ( )4 0,...,0 0f =   

It is a continuous multimodal function considered difficult to optimize because of its non-separable nature.  

5. Six hump Camel back function: 

     ( ) 2 4 6 2 4

5 1 1 1 1 2 2 2

1
4 2.1 4 4

3
f x x x x x x x x= − + + − +  With 5 5

i
x− ≤ ≤ , min       

      
( ) ( )5 0.0898, 0.7126 0.0898,0.7126 1.0316285f − − = −

 
 It is a multimodal function with two global minima and four local minima. 


