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Abstract- This paper describes an evolutionary 

clustering algorithm, which can partition a given dataset 

automatically into the optimal number of groups through 

one shot of optimization. The proposed method is based on 

an evolutionary computing technique known as the 

Bacterial Evolutionary Algorithm (BEA). The BEA draws 

inspiration from a biological phenomenon of microbial 

evolution. Unlike the conventional mutation, crossover and 

selection operaions in a GA (Genetic Algorithm), BEA 

incorporates two special operations for evolving its 

population, namely the bacterial mutation and the gene 

transfer operation. In the present context, these operations 

have been modified so as to handle the variable lengths of 

the chromosomes that encode different cluster groupings. 

Experiments were done with several synthetic as well as 

real life data sets including a remote sensing satellite image 

data. The results estabish the superiority of the proposed 

approach in terms of final accuracy. 

 
Keywords: Clustering, Pattern Recognition, genetic 

Algorithm, Bacterial Evolution, Metaheuristics. 

I. INTRODUCTION 

The objective of clustering is to partition unlabeled data 

[1] into groups of similar objects. Each group, called a 

‘cluster’, consists of objects that are similar between 

themselves and dissimilar to objects belonging to other 

groups. Clustering, or cluster analysis, is prevalent in 

any discipline that involves analysis of multivariate 

data. In the past few decades, cluster analysis has played 

a central role in diverse domains of science and 

engineering [1-3].  

Clustering algorithms can be hierarchical or partitional 

[2]. In hierarchical clustering, the output is a tree 

showing a sequence of clustering with each cluster 

being a partition of the data set [2]. Partitional clustering 

algorithms, on the other hand, attempts to decompose 

the data set directly into a set of disjoint clusters. They 

try to optimize certain criteria (e.g. a Squared-error 

function).  

The problem of partitional clustering has been 

approached from the diverse fields of knowledge like 

statistics (multivariate analysis) [4], graph theory [5], 

expectation maximization algorithms [6], artificial 

neural networks [7], evolutionary computing [8], swarm 

intelligence [9] and so on. While there remains a 

plethora of clustering algorithms, the important issue of 

determining the correct number of clusters in a virgin 

dataset is rarely touched upon. Finding the exact number 

of clusters is difficult because, unlike in supervised 

learning, there are no class labels for the data and, thus, 

no obvious criteria to guide the search. An account of 

the works undertaken in this direction can be found in 

[8].  

In this work, the problem of automatic clustering has 

been approached from a framework of the Bacterial 

Evolutionary Algorithm (BEA) [10]. The BEA is a 

relatively new addition to the vast family of 

evolutionary computing techniques. Nature has served 

as an endless resource of ideas and metaphors for 

building the variations of the basic GA scheme [11]. 

Instead of using the conventional crossover, mutation 

and selection cycles of a GA, BEA employs two special 

operations to evolve its population of chromosomes 

(each of which encodes one trial solution of the 

optimization problem). The first of these is bacterial 

mutation, which mimics a process occurring in the 

bacterial genetics level and aims at improving the parts 

within the chromosomes. The second one, called gene 

transfer operation, is employed for the exchange of 

information between chromosomes in the population. It 

is motivated by the phenomenon of transfer of strands of 

genes through a population of bacteria. By means of this 

mechanism, one bacterium can rapidly spread its genetic 

information to the other cells without any crossover 

operation. Previously there have been only a few 

applications of the BEA mainly to model identification 

and fuzzy system parameters discovery [9]. This, to the 

best of our knowledge is the first paper that employs 

BEA to a pattern recognition problem.  

The proposed algorithm, called by us the ACBEA 

(Automatic Clustering with BEA), encodes one 

complete partitioning of the data in a chromosome such 

that each part or gene in the chromosome represents a 



 

 

cluster. Since the number of clusters is not known a 

priori, the chromosomes come with variable lengths, 

each encoding a different number of classes in the data. 

We have incorporated a new operation called 

chromosome repair and also have modified both the 

mutation and gene transfer operations slightly to handle 

these variable-size chromosomes.  
 

II. THE CRISP CLUSTERING PROBLEM 

 
A pattern is a physical or abstract structure of objects. It 

is distinguished from others by a collective set of 

attributes called features, which together represent a 

pattern [8]. Let P = {P1, P2... Pn} be a set of n patterns or 

data points, each having d features. These patterns can 

also be represented by a profile data matrix Xn×d having 

n d-dimensional row vectors. The i-th row 

vector
iX

r
characterizes the i-th object from the set P and 

each element Xi,j in iX
r

corresponds to the j-th real value 

feature (j = 1, 2, .....,d) of the i-th pattern ( i =1,2,...., n). 

Given such an Xn×d, a partitional clustering algorithm 

tries to find a partition C = {C1, C2,......, CK}of K 

classes, such that the similarity of the patterns in the 

same cluster is maximum and patterns from different 

clusters differ as far as possible. The partitions should 

maintain the following properties: 
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Since the given dataset can be partitioned in a number 

of ways maintaining all of the above properties, a fitness 

function (some measure of the adequacy of the 

partitioning) must be defined. The problem then turns 

out to be one of finding a partition C
*
 of optimal or 

near-optimal adequacy as compared to all other feasible 

solutions C = { C
1
, C
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is the number of feasible partitions. This is same as,  

                          
C

Optimize ),( dn CXf
×

                  (3) 

where C is a single partition from the set C and f is a 

statistical-mathematical function that quantifies the 

goodness of a partition on the basis of the distance 

measure of the patterns. It has been shown in [28] that 

the clustering problem is NP-hard when the number of 

clusters exceeds 3. 

 

III. AUTOMATIC CLUSTERING WITH BEA 

In this Section, we describe the automatic clustering 

algorithm based on the BEA. The ACBEA starts with a 

population of variable length chromosomes, each of 

which encodes an entire grouping of the data. To 

measure the compactness, we first define the mean 

spread of the i-th cluster by taking the mean pair wise 

distance between the objects belonging to a cluster. This 

can be done by adding the elements of the upper or 

lower triangular portion of the adjacency matrix 

constructed for each cluster and dividing the sum by the 

total number of elements added i.e. 2/)1( −ii nn where 

ni is the number of objects belonging to the cluster 

under test. The mean spread of the i-th cluster can be 

mathematically formalized as:  
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where kX
r

and jX
r

are two data points belonging to the 

same cluster Ci and ),( qi XXd
rr

denotes their distance 

(similarity measure) in the feature space. At this point 

please note that we do not use here the popular criterion 

of intra-cluster variance, which squares the distance 

value and is more strongly biased towards the 

spherically shaped clusters around the cluster centroid. 

The compactness is defined as the reciprocal of the 

mean spread:                                                                     
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3.1 Encoding the Chromosomes and Population 

Initialization  

In order to make room for several possible choices of 

the number of clusters, ACBEA encodes an entire 

partitioning of the data in a single chromosome or 

bacterium cell. In each such chromosome, a gene 

encodes one cluster [12]. Thus if the r-th chromosome 

contains K genes { r
K

r
i

r GGG ,.....,,.....,1
}, it actually 

encodes a portioning of the dataset into K clusters. Each 

such group or cluster r
iG of the r-th chromosome 

contains 
r

in  number of data points such that 

nn
K

i

r

i =∑
=1

where n is the total number of data points in the 

given dataset. Each gene encoding a cluster actually 

consists of the integral labels of those data points, which 

belong to that cluster. For example, the i-th gene r
iG of 

the r-th chromosome contains r
in  

integers },....,,...,,{ 21
r

n

r
ij

r
i

r
i r

i

llll such that },....,1{ nl
r
ij ∈ and 

r

ijl physically means that the j-th object from the data set 



 

 

P = {P1, P2... Pn} under test, belongs to the i-th cluster 

encoded by the r-th chromosome. This representation 

scheme has been shown diagrammatically in Figure 1. 

 
 

FIGURE 1. CHROMOSOME REPRESENTATION SCHEME FOR ACBEA 

 

In this work, we have refrained from using an encoding 

based on cluster centers even though these have been 

the most commonly found encoding scheme in the EA 

clustering literature. Initially each chromosome is 

generated in such a fashion that the number of clusters 

to be encoded by it is chosen randomly from the set of 

integers {2, 3..., KMAX}. Hence the possible number of 

clusters may vary between 2 and KMAX which may be 

supplied by the user.  

3.2 Genetic Operators  

 
1) Bacterial Mutation After the generation of the initial 

population, the bacterial mutation is applied to each 

chromosome one by one. The mutation operators of the 

ACBEA differ to some extent from those of the classical 

BEA reported in [10]. They are specifically designed to 

allow the length of the chromosomes to be changed 

dynamically as the evolutionary learning process 

progresses. In bacterial mutation, the first chromosome 

is chosen and then it is reproduced in m – 1 clone. Each 

clone is then mutated probabilistically with the one of 

the following three operators: 

a) The random replacement mutation which occurs 

with a probability Prr. 

b) The Split-gene mutation occurring with a 

probability Psg. 

c) The Merge-gene mutation occurring with a   

probability of Pmg. 

The clones are next evaluated according to some 

fitness function (to be discussed in the next section). 

The best chromosome from the m individuals is selected 

to remain in the population and the other m–1 

individuals are deleted. This genetic operation is applied 

to all the chromosomes in the current population. Below 

we elaborate each mutation operator.  

a)The random replacement mutation: In this 

operation, the i-th gene of a chromosome is selected 

randomly. A new one, not previously contained in the 

cluster encoded by that gene, with a probability Pdr, 

replaces each data label of the selected gene. This 

operation for the j-th data label of the i-th gene in r-th 

chromosome may be expressed as: 

          Replace with kl , if rand (0, 1) < Pdr 

where kl is an integer and 
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llll is the set of data labels contained in 

the i-th gene and rand (0, 1) is a uniformly distributed 

random number in [0, 1].Thus the cluster encoded by 

the mutated gene is reconfigured, although the number 

of data points belonging to it remains unaltered. 

b) The Split-gene mutation: In this case, we first rank 

the genes of a target chromosome in the ascending order 

of their cohesiveness. Next we set a gene selection 

probability Pgs. Based on Pgs, Sj number of genes with 

relatively low cohesion are selected for splitting, where 

Sj < K/2 and the minimum value of Sj is 1. Those 

selected may be represented as: }...,,...{ 1

r

sj

r

si

r

s GGG  and 

},...,,...,{ 1

r

K

r

i

rr

si GGGG ∈ . Finally we randomly split 

each gene in }...,,...{ 1

r

sj

r

si

r

s GGG into two clusters. The 

resulting number of genes in the chromosome becomes 

K+2.Sj and this number has to be smaller than KMAX, 

otherwise the mutation operator terminates. 

c) The Merge-gene mutation: Like the previous case, 

we first set a gene selection probability Pgm. Based on 

Pgm, mj number of genes with relatively low cohesion 

are selected for merging, where mj < K/2 and the 

minimum value of mj is 2.  The selected genes in this 

way form a merging pool: }...,,...{ 1

r

mj

r

mi

r

m GGG  where 

mj<K and },...,,...,{ 1

r

K

r

i

rr

mi GGGG ∈ . Finally the genes 

in }...,,...{ 1

r

mj

r

mi

r

m GGG are merged together into a single 

gene and is returned to a random location of the 

chromosome. In this way the length of the chromosome 

becomes 1+− jmK and this length must be greater than 

2 (the minimum number of possible clusters) or 

otherwise the mutation operator terminates. 

After mutating the i-th gene, ACBEA calls for a 

procedure for repairing the chromosomes. During the 

repairing procedure, all the genes of a mutated 

chromosome are scanned to remove duplicates in such a 

way that if a data label is found in another gene, it is 

removed. For those record labels that have not been 

assigned to any of the genes after their removal, they are 

randomly assigned to one of the genes (except the one 

from which they were removed).  

2) The Gene Transfer Operation: The gene transfer 

operation is schematically illustrated in Figure 2. It 

takes place through the following steps: 
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a) The population is sorted in two halves: the half with 

individuals with better fitness is called the superior half 

while the other half is called the inferior half.  

b) One chromosome is randomly picked up from the 

superior half and named source chromosome, while 

another one is selected at random from the inferior half 

and is named destination chromosome. Now according 

to some given criteria a ‘good’ part or gene from the 

source chromosome is to be transferred to the 

destination chromosome. Here, in context to the 

clustering problem, goodness of a cluster encoded by 

each gene is synonymous to its cohesiveness given by 

equations (4) and (5).  

In ACBEA, the gene with highest compactness value is 

transferred from the source    chromosome to the   

destination chromosome. In the destination 

chromosome, the coming gene overwrites a randomly 

selected gene with lower compactness value.  

d) Steps 1 through 3 are repeated Ninf times where Ninf 

stands for the number of infections per generation.   

                 

 

FIGURE 2.  SCHEME FOR THE GENE TRANSFER OPERATION. 

 

After the transfer of the gene to an inferior 

chromosome, it goes through a repairing mechanism, 

where all the genes of the chromosomes are thoroughly 

scanned to remove any duplicate data-label that occurs 

in more than one gene. The mutation and gene transfer 

operations are looped until a maximum number of 

generations have been exceeded. Flow-chart of the 

entire process has been provided in Figure 3. 

 

 

FIGURE 3.  FLOW-CHART FOR BEA-BASED CLUSTERING ALGORITHM. 

 

3.3 Designing the Fitness Function  

Selection of a suitable fitness function acts as a major 

driving force behind any evolutionary computing 

technique. The fitness function of the ACBEA is based 

on a recently developed clustering validity index. 

Cluster validity indices correspond to the statistical-

mathematical functions used to evaluate the results of a 

clustering algorithm on a quantitative basis.  

The fitness function of the ACBEA is based on the 

CS measure, recently proposed by Chou et al. [13]. 

Before applying the CS measure; centroid of a cluster is 

computed by averaging the data vectors belonging to 

that cluster using the formula 
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A lower value of CS (K) indicates the better quality of 

the partitioning. As can easily be perceived, this 

measure is a function of the ratio of the sum of within-

cluster scatter to between-cluster separation. The CS 

measure based fitness function (to be maximized) for 

the i-th chromosome encoding K classes may be 

described as: 

          
epsKCS

f
i +

=
)(

1
1                                           (8)   

where eps is a small bias term equal to 0.002 and it 

prevents the fitness function from moving up to infinity 

if somehow CSi (K) becomes zero for a chromosome. 

We choose CS measure as the basis of the fitness 

evaluation mechanism, as according to the authors, it is 

more efficient in tackling clusters of different densities 

and/or sizes than the other popular validity measures, 

the price being paid in terms of high computational load 

with increasing K and n. 

 
IV. EXPERIMENTAL SETUP 

This section describes the setup for the simulation 

experiments undertaken to compare the performance of 

ACBEA with three other competitive clustering 

algorithms using five benchmark datasets of varying 

levels of complexity. 

4.1 The Datasets Used  

We have used five real life datasets to compare the 

contestant clustering methods.  The following real-life 

datasets [16] are used in this study. Here n = number of 

data points, d = number of features and K = number of 

clusters. 

1) Iris plants database (n =150, d = 4, K = 3)  

2) Glass (n =214, d = 9, K = 6) 

3) Breast cancer data set (n = 683, d = 9, K = 2) 

4) Wine (n = 178, d = 13, K = 3) 

5)Vowel Dataset (n = 871, d = 3, K = 6) 

4.2  Algorithms for Comparisons 

In order to evaluate the performance of BEA, we 

compare it with two recently developed automatic 

clustering algorithms known as the DCPSO (Dynamic 

Clustering with Particle Swarm Optimization) [15] and 

GCUK (Genetic Clustering with an Unknown K). We 

also take into account the classical k-means algorithm 

[17] for the comparative study. 

4.3 Algorithmic Settings  

This paper uses the “usual” parameter settings for the 

three search techniques. Table 1 summarizes these 

settings. In addition, the same parameter settings have 

been used for all the clustering problems to make the 

comparison fair. In Table 1, Popsize indicates the size of 

the population.  

Table 1: Parameters for competitive clustering algorithms 

 
4.4 Simulation Strategy 

 All the three optimization algorithms are stochastic in 

nature. Hence, for each problem they have been run 

several times. Since the algorithms have been made to 

work on the same framework as described in section 4, 

the actual number of classes has not been supplied to 

any of them for any of the problems detailed in section 

5.Out of multiple runs for a given algorithm for a given 

problem, only those were considered successful in 

which the algorithm could determine the true number of 

classes. The results have been stated in terms of the 

mean values and standard deviations over 50 successful 

runs in each case. Since the population size for DCPSO, 

PSO and GA are markedly different; the present authors 

choose number of fitness evaluations as a measure of 

computation time instead of ‘generations’ or ‘iterations’. 

Number of fitness evaluations roughly equals the 

product of the population size and the number of 

generations. In this study, all the competitor algorithms 

except the K-means were allowed to run for 2 × 10
5 

function evaluations. The algorithms were compared 

based on: 

1) The CS measure as defined in equation (7); 

2) The intra-cluster distances, i.e. the distance between 

data vectors within a cluster, where the objective is   

to minimize the intra-cluster distances. 

GCUK DCPSO ACBEA 

Para-meter Value Para-

meter 

Value Para- 

meter 

Value 

Pop_size 50 Pop 

size 

100 Pop_size 20 

Cross-over 

Prob-ability 

µc 

0.8 Inertia 

Weight 

0.72 Prr 0.54 

Psg 0.31 

Muta-tion 

prob-ability 

µm 

0.001 C1, C2 1.494 Pmg 0.23 

Pini 0.75 Pdr 0.30 

Pgm 0.44 

Kmax 

Kmin 

20 

2 

Kmax 

Kmin 

20 

2 

Kmax 

Kmin 

20 

2 



 

 

3) The inter-cluster distances, i.e. the distance between 

the centroids of the clusters, where the objective is to 

maximize the distance between clusters.  

4) The robustness, i.e. the number of times an automatic 

clustering algorithm can find out the correct number 

of clusters.  

The latter two objectives respectively correspond to 

crisp, compact clusters that are well separated. All the 

algorithms discussed here have been developed from 

scratch in Visual C++ platform on a Pentium IV, 2.2 

GHz PC, with 512 KB cache and 2 GB of main memory 

in Windows Server 2003 environment. The graphs and 

figures have been obtained using MATLAB 6.5.  

V.  EMPIRICAL RESULTS 

 

Table 2 summarizes the clustering result over five 

public domain datasets in terms of the final CS-measure 

value, mean inter-cluster, and intra-cluster distances. 

For the population based search algorithms, the mean 

best value and the standard deviation over 50 successful 

runs have been reported. Except for the K-means 

algorithm, no method has been supplied with the exact 

number of classes. Only a maximum number of clusters 

(20 for all cases) has been specified for all of them. 

Figure 4 provides a visual feel of the performance of 

fourclustering methods over the iris dataset. The actual 

four-dimensional dataset has been plotted in 3 

dimensions using the first three features only. 

Row 1 of Table 2 and Figure 4 indicate the fact 

that Fisher's iris dataset is not sufficiently challenging to 

compare the performance between advanced clustering 

algorithms despite its great popularity in the clustering 

community. All the three methods performed equally 

well on this dataset whereas K-means algorithm 

frequently got stuck in local minima. Substantial 

performance differences occur for challenging 

clustering problems with a large number of data-items 

and clusters as well as overlapping cluster shapes. Over 

the wine dataset, accuracy of K-means and the new 

method where comparable, however this was the only 

case where PSO based clustering yielded best results. 

Over the rest three datasets and especially for the vowel 

data, that has strongly overlapping classes associated 

with it, the BEA method gives best results in terms of 

robustness and accuracy. It can be seen that in almost all 

the cases BEA based method gives a greater number of 

successful runs.  

Since all the datasets used here have their nominal 

partitions known to the user, the present work also 

computes the mean number of misclassified data-points. 

This is the average number of objects that were assigned 

to clusters other than according to the nominal 

classification. Table 4 reports the corresponding mean 

values and standard deviations over 50 successful runs 

for all the three population based algorithms. One can 

easily see that the DCPSO based dynamic clustering 

algorithm yields lowest number of misclassified items in 

most of the cases. However, for breast cancer dataset, 

performance of the K-means is comparable to the new 

method.  

 

 

 

 

 

 

 

 

a)Unlabelled 3-D plot of           (b) Clustering with BEA                                                       

Iris data                
 

 

 

 

 

 

 
(c) ClusteringwithGCU               (d)Clustering with   DCPSO                                               

 
FIGURE 4: PERFORMANCE OF FOUR CLUSTERING METHODS OVER THE 

IRIS DATASET 

 

A non-parametric statistical significance test called 

Wilcoxon’s rank sum test for independent samples [18, 

19] has been conducted at the 5% significance level on 

the CS measure data of Table 2. Table 3 shows reports 

the P-values produced by Wilcoxon’s rank sum test for 

comparison of the error scores of two groups (one group 

corresponding to BEA and the other corresponding to a 

competitor algorithm) at a time. As a null hypothesis, it 

is assumed that there is no significant difference 

between the mean values of two groups. Whereas, the 

alternative hypothesis is that there is significant 

difference in the mean values of the two groups. All the 

P-values reported in the Table are less than 0.05 (5% 

significance level).  This is strong evidence against the 

null hypothesis, indicating that the better mean values of 

the performance metrics produced by BEA is 

statistically significant and has not occurred by chance.  

 

 

 



 

 

TABLE 2. CLUSTERING RESULT OVER FIVE REAL LIFE DATASETS (FOR ALALGORITHMS, MEAN AND STANDARD DEVIATION OVER 50 SUCCESSFUL 

RUNS AND EQUAL NUMBER OF FUNCTION EVALUATIONS 2×105
 HAS BEEN USED FOR THE LAST THREE ALGORITHMS) 

 
 

TABLE 3. P-VALUES PRODUCED BY WILCOXON’S RANK SUM TEST TAKING COMPARING BEA WITH OTHER ALGORITHMS 

 ON THE CS-MEASURE DATA OF TABLE 2. 

 

 

 

 

 

 

 

 
 

 

TABLE 4. MEAN CLASSIFICATION ERROR OVER NOMINAL PARTITION AND STANDARD DEVIATION OVER THE 50 SUCCESSFUL RUNS ON THE REAL 

WORLD DATASETS FOR THE FOUR ALGORITHMS COMPARED 

 

 

 

 

 

 

 

 

 

 

 

Dataset Algorithm successful 

runs % 

CS measure Intra cluster Distance Inter cluster Distance 

 

Iris 

K-means NA 0.9562±0.06021 3.542±0.056 1.726±0.052 

BEA 88% 0.1735±0.029 3.125±0.068 2.487±0.063 

DCPSO 40% 0.6508±0.073 3.144±0.056 2.0144±0.0474 

GCUK 48% 0.9081±0.1267 3.274±1.72 2.0058±0.561 

 

Wine 

K-means NA 1.2645±0.0021 3.975±0.0026 0.7113±0.00054 

BEA 86% 0.8065±0.0037 3.112±0.02573 0.8915±0.00663 

DCPSO 60% 0.7721±0.046 3.851±0.0173 0.9613±0.00054 

GCUK 54% 1.3945±0.0281 3.065±0.1226 0.7563±0.0078 

Breast-

Cancer 

K-means NA 0.6445±0.041 6.975±0.0026 1.7113±0.00054 

BEA 68% 0.4265±0.0035 5.0212±0.02573 1.2215±0.03663 

DCPSO 22% 0.6021±0.32 5.851±0.0173 2.9613±0.00054 

GCUK 30% 0.548±0.0478 6.851±1.0161 2.4413±0.0194 

 

Vowel 

K-means NA 2.32±0.0047 149962.75±0.0026 1898.7113±0.0054 

BEA 74% 0.9265±0.075 142809.12±0.02573 2982.8215±0.0663 

DCPSO 56% 1.1321±0.231 15002.51±0.0173 1932.9613±0.00054 

GCUK 26% 2.8921±0.62 149987.34±0.0923 2009.903±0.0173 

 

Glass 

K-means NA 0.92±0.68 11054.561±309.4 1053.890±22.14 

BEA 80% 0.7065±0.0062 10974.644±210.1 954.672±19.04 

DCPSO 66% 1.1089±0.29 11088.546±333.9 1031.872±34.95 

GCUK 48% 1.0977±0.112 11109.302±435.6 1077.929±18.77 

Dataset                                                P-Value 
DCPSO GCUK k-means 

Iris 1.8267e-004 1.8165e-004 4.9367e-005 

Wine 1.4623e-004 1.8143e-005 3.8264e-005 

Breast Cancer 1.9252e-004 1.7446e-004 1.3573e-004 

Vowel 1.6924e-004 1.8001e-004 1.8115e-004 

Glass 1.8824e-004 1.8179e-004 1.8235e-004 

Dataset Mean Classification Error 

BEA DCPSO GCUK k-means 

Iris 2.35±0.00 4.15±0.0 5.00±0.00 3.96±0.00 

Wine 36.65±0.0 99.4±1.09 100.24±1.05 114.50±1.53 

Breast Cancer 22.25±0.28 27.01±1.25 29.00±1.55 29.15±0.50 

Vowel 418.75±3.10 453.58±6.61 476.42±6.92 473.72±4.25 

Glass 92.55±0.19 102.1±0.68 98.21±0.08 105.36±0.54 



 

 

VI. CONCLUSIONS 
 

This paper has presented a new, Bacterial Evolutionary 

Algorithm-based strategy for crisp clustering of real 

world datasets. An important feature of the proposed 

technique is that it is able to find the optimal number 

of clusters automatically (that is, the number of clusters 

does not have to be known in advance) even for very 

high dimensional datasets where tracking of the 

number of clusters may be well nigh impossible. The 

proposed ACBEA algorithm has been shown to meet 

or beat two other state-of-the-art clustering algorithms 

in a statistically meaningful way over majority of the 

benchmark datasets discussed here. This certainly does 

not lead us to claim that ACBEA may outperform 

DCPSO or GCUK over every dataset since it is 

impossible to model all the possible complexities of a 

real life data with the limited test-suit that we used for 

testing the algorithms. In addition, the performance of 

DCPSO and GCUK may also be enhanced with a 

judicious parameter tuning, which renders itself to 

further research with these algorithms. However, the 

only conclusion we can draw at this point is that BEA 

with the suggested modifications can serve as an 

attractive alternative for dynamic clustering of 

completely unknown datasets.  
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