
Scheduling in Multiprocessor System Using Genetic Algorithms

Keshav Dahal
1
, Alamgir Hossain

1
, Benzy Varghese

1
,

Ajith Abraham
2
, Fatos Xhafa

3
, Atanasi Daradoumis

4

1
University of Bradford, UK, {k.p.dahal; m.a.hossain1}@Bradford.ac.uk, betzymol@yahoo.com

2
Norwegian University of Science and Technology, Norway, ajith.abraham@ieee.org

3
Universitat Politècnica de Catalunya, Barcelona, Spain, fatos@lsi.upc.edu

4
Universitat Oberta de Catalunya, Barcelona, Spain, adaradoumis@uoc.edu

Abstract

Multiprocessors have emerged as a powerful

computing means for running real-time applications,

especially where a uniprocessor system would not be

sufficient enough to execute all the tasks. The high

performance and reliability of multiprocessors have

made them a powerful computing resource. Such

computing environment requires an efficient algorithm

to determine when and on which processor a given

task should execute. This paper investigates dynamic

scheduling of real-time tasks in a multiprocessor

system to obtain a feasible solution using genetic

algorithms combined with well-known heuristics, such

as ‘Earliest Deadline First’ and ‘Shortest Computation

Time First’. A comparative study of the results

obtained from simulations shows that genetic

algorithm can be used to schedule tasks to meet

deadlines, in turn to obtain high processor utilization.

1. Introduction

Real-time systems are software systems in which the

time at which the result is produced is as important as

the logical correctness of the result [1]. That is, the

quality of service provided by the real-time computing

system is assessed based on the main constraint ‘time’.

Real-time applications span a large range of activities

which include production automation, embedded

systems, telecommunication systems, nuclear plant

supervision, surgical operation monitoring, scientific

experiments, robotics and banking transactions [2].

Scheduling is an important aspect in real-time

systems to ensure soft/hard timing constraints.

Scheduling tasks involves the allotment of resources

and time to tasks, to satisfy certain performance needs

[1]. In a real-time application, real-time tasks are the

basic executable entities that are scheduled [2]. The

tasks may be periodic or aperiodic and may have soft

or hard real-time constraints. Scheduling a task set

consists of planning the order of execution of task

requests so that the timing constraints are met.

Multiprocessors have emerged as a powerful

computing means for running real-time applications,

especially where a uniprocessor system would not be

sufficient enough to execute all the tasks by their

deadlines [3]. The high performance and reliability of

multiprocessors have made them a powerful computing

means in time-critical applications [4].

Real-time systems make use of scheduling

algorithms to maximize the number of real-time tasks

that can be processed without violating timing

constraints [5]. A scheduling algorithm provides a

schedule for a task set that assigns tasks to processors

and provides an ordered list of tasks. The schedule is

said to be feasible if the timing constraints of all the

tasks are met [2]. All scheduling algorithms face the

challenge of creating a feasible schedule.

In multiprocessor real-time systems static algorithms

are used to schedule periodic tasks whose

characteristics are known a priori. Scheduling of

aperiodic tasks whose characteristics are not known a

priori requires dynamic scheduling algorithms [4].

Dynamic scheduling can be either centralized or

distributed. In a distributed dynamic scheduling

scheme, each processor has its own local scheduler that

determines whether it can satisfy the requirements of

the incoming task. If it cannot satisfy, then the

scheduler tries to find another processor which can

handle the task. In a centralized dynamic scheduling

scheme, there is a central processor called the

scheduler which determines which processor the task

should be allocated for execution [4, 6]. Srinivasan and

Anderson [7] have studied the dynamic scheduling of

task systems on multiprocessors, considering the tasks

that are allowed to join and leave the system. The two

main objectives of task scheduling in real-time systems

are meeting deadlines and achieving high resource

utilization [4].

Various heuristic approaches have been widely used

for scheduling. The use of genetic algorithm (GA) for

real-time task scheduling is now been studied

extensively. GAs seem attractive to real-time

application designer as it relieves the designer from

knowing how to construct a solution and the designer

just requires knowing how to assess a given solution

[8]. Page and Naughton presented a scheduling strategy

which makes use of a GA to dynamically schedule

heterogeneous tasks on heterogeneous processors in a

distributed system [9]. Genetic algorithm has been

utilized to minimize the total execution time. The

simulation studies presented shows the efficiency of the

scheduler compared to a number of other schedulers.

However the efficiency of the algorithm for time

critical applications has not been studied. A good

tradeoff between exploitation and exploration in GA

allows to accelerate the search, which is interesting in

case of real-time scheduling.

This paper proposes using genetic algorithm

incorporating traditional scheduling heuristics to

generate a feasible schedule based on the work done by

Mahmood [6]. The scheduling algorithm considered,

aims in meeting deadlines and achieving high

utilization of processors. The paper also aims to

provide a comparative study of incorporating heuristics

such as ‘Earliest Deadline First (EDF)’ and ‘Shortest

Computation Time First (SCTF)’ separately with

genetic algorithms. The scheduler model considered for

the study would contain task queues from which tasks

would be assigned to processors. Task queues of

varying length would be generated at run time. From

the task queue only a set of tasks would be considered

at a time for scheduling. The size of the task sets

considered for scheduling would also be varied for a

comparative study.

2. Task and scheduler models

The real-time system is assumed to consist of m,

where m > 1, identical processors for the execution of

the scheduled tasks. They are assumed to be connected

through a shared medium. The scheduler may assign a

task to any one of the processors. Each task Ti in the

task set is considered to be aperiodic, independent and

nonpreemptive. Each task Ti is characterised by: Ai :

arrival time; Ri: ready time; Ci : worst case computation

time; Di : deadline.

The scheduler determines the scheduled start time

and finish time of a task. If st(Ti) is the scheduled start

time and ft(Ti) is the scheduled finish time of task Ti ,

then the task Ti is said to meet its deadline if (Ri ≤
st(Ti) ≤ Di – Ci) and (Ri + Ci ≤ ft(Ti) ≤ Di). That is, the

tasks are scheduled to start after they arrive and finish

execution before their deadlines [3]. A set of such tasks

can be said to be guaranteed.

The static code analysis and the average of

execution times under possible worst cases help to

obtain the worst case computation time of a task. The

actual computation time of a task could be more or less

than its worst case computation time [10]. It is possible

that the actual computation time is less than its worst

case computation time due to various factors like

dependable loops and conditional statements. The

architectural features of the system such as cache hits

and dynamic branch prediction may also account for

the change in the actual computation time. There might

also be cases where the actual computation time of a

task is more than its worst case computation time.

Manimaran and Murthy [10] have referred techniques

such as “Task Pair” scheme to handle such situations.

The tasks in the system are assumed to be

nonpreemptive so that when a task starts execution on a

processor, it finishes to its completion. Tasks may also

have precedence constraints. This could be

incorporated by modifying the ready time and

deadlines of tasks so that they comply with the

precedence constraints among them. As dealing with

precedence constraints is equivalent to working with

modified ready times and deadlines it could be applied

for the tasks in the presented system. However this has

not been done explicitly for the simulation study

presented so the tasks are assumed to be independent.

This paper assumes a centralized scheduling scheme

with each processor executing the tasks that fill its

dispatch queue. The incoming tasks are held in the task

queue and then passed on to the scheduler for

scheduling of tasks. It is the central scheduler that

allocates the incoming tasks to other processors in the

system. Each processor has a dispatch queue associated

with it. The processor executes tasks in the order they

arrive in the dispatch queue. The communication

between the scheduler and the processors is through

these dispatch queues. The scheduler works in parallel

with the processors. The scheduler schedules the newly

arriving tasks and updates the dispatch queue while the

processors execute the tasks assigned to them. The

scheduler makes sure that the dispatch queues of the

processors are filled with a minimum number of tasks

so that the processors will always have some tasks to

execute after they have finished with their current tasks.

The minimum capacity of the dispatch queues

depends on factors like the worst case time complexity

of the scheduler to schedule newly arriving tasks [10].

A feasible schedule is determined by the scheduler

based on the worst case computation time of tasks

satisfying their timing constraints.

The scheduler model showing the parallel execution

of scheduler and processors in a centralized scheduling

scheme is shown in Figure 1. The scheduling algorithm

to be discussed has full knowledge about the set of

tasks that are currently active. But it does not have

knowledge about the new tasks that arrive while

scheduling the current task set.

Figure 1. The scheduler model.

The objective of the dynamic scheduling is to

improve or maximize what is called the guarantee ratio.

It is defined as the percentage of tasks arrived in the

system whose deadlines are met. The scheduler in the

system must also guarantee that the tasks already

scheduled will meet their deadlines.

3. Implementation of scheduling algorithm

Initially a task queue is generated with tasks having

the following characteristics namely, arrival time, ready

time, worst case computation time and deadline. The

tasks are sorted in the increasing order of their

deadlines. The tasks are ordered so that the task with

the earliest deadline can be considered first for

scheduling. The algorithm considers a set of tasks from

the sorted list to generate an initial population. In the

initial population, each chromosome is generated by

assigning each task in the task set to a randomly

selected processor and the pair (task, processor) is

inserted in a randomly selected unoccupied locus of the

chromosome. The size of the chromosome depends on

the number of tasks selected from the sorted list. This

ensures that part of the chromosome does not remain

empty. The tasks in each chromosome are then sorted

based on their deadline. This is done because the

chromosome representation also gives the order in

which the tasks are executed in a processor. The sorting

ensures that the tasks with earliest deadline are given

priority. The fitness evaluation of the chromosomes in

the population is then performed. This helps to

determine the number of tasks in each chromosome that

meet their deadlines. The chromosomes in the

population are then sorted based on the fitness values.

The chromosomes are sorted in the descending order of

their fitness value.

GA operators are then applied to the population of

chromosomes until a maximum number of iterations

have been completed. When applying GA operators to

the population, reproduction is applied first followed

by crossover, partial-gene mutation, sublist-based

mutation and then order-based mutation. In each

iteration, the tasks in the chromosomes are sorted based

on their deadline and the evaluation of the

chromosomes and sorting of the chromosomes based

on fitness value is performed. After number of

iterations the best schedule for the set of tasks is

obtained.

The steps in the scheduling algorithm explained

above could be summarized as follows:

1. Generate a task queue

2. Sort the tasks in the increasing order of their

deadlines

3. Select a suitable number of tasks for a fixed

chromosome size

4. Generate chromosomes for the population

5. Sort the genes in each chromosome based on

deadline

6. Determine the fitness value of each chromosome in

the population

7. Sort the chromosomes within the population

depending on fitness value

8. Apply GA operators for a number of iterations:

Sort the genes in each chromosome based on

deadline; Determine the fitness value of each

chromosome in the population; Sort the

chromosomes within the population depending on

fitness value.

9. Choose the best chromosome

The tasks that are found infeasible are removed

from the chromosomes so that they are not

reconsidered for scheduling. For a task Ti to be feasible

it should satisfy the condition that (Ri ≤ st(Ti) ≤ Di –

Ci) and (Ri + Ci ≤ ft(Ti) ≤ Di) where Ri is the ready

time, Di is the deadline and Ci is the worst case

computation time of task Ti . st(Ti) and ft(Ti) denoted

the start time and finish time of task Ti respectively. If

the condition is not satisfied it is said to be infeasible.

The effectiveness of the scheduling algorithm was

studied by conducting simulation studies. The various

parameters that have been used in the implementation

of the algorithm are discussed in this section. The

simulation study considers the assigning of a set of

tasks to a number of processors. For these, task queues

of different lengths were generated at run time from

which a set of tasks were chosen at a time for

scheduling. The lengths of task queues considered were

100, 200, 400 and 600. The worst case computation

time, Ci, of a task Ti has been chosen randomly

between a minimum and maximum computation time

value denoted by MIN_C and MAX_C. The values of

MIN_C and MAX_C were set to 30 and 60

respectively. The value for the deadline of a task Ti has

been randomly chosen between (Ri + 2 * Ci) and (Ri +

r * Ci) where r ≥ 2. This ensures that the computation

time is always less than the deadline. For the study, the

value of r has been chosen to be 3. The mean of the

arrival time was assumed to be 0.05. The number of

processors, m considered was 10.

The values for the number of iterations for the

application of the GA operators have been based on

number of trials. For the value of ‘x’, which denotes the

percentage of tasks to be killed before applying

reproduction operator, it has been reported in [5] that

best results were obtained with x = 20. Therefore the

value of 20 percent has been considered for the

algorithm presented in the paper. The chromosome size

has been assumed equal to the number of tasks

considered at a time for scheduling. Depending on this,

the value for the chromosome size has been varied

between 20 and 60. As mentioned before the fitness

value determines the number of tasks in the

chromosome that can meet their deadlines. That is the

number of tasks that are feasible. Hence here, for

chromosome size 20 the maximum fitness value that

can be obtained is 20. The population size for the

algorithm has been assumed to be 30. That is 30

chromosomes have been considered at a time for the

application of GA operators. Thus the tasks which have

been generated with the values for their characteristics

chosen appropriately have been considered for

scheduling. Initially the tasks were assigned to

processors based on ‘Earliest Deadline First’. After the

results have been observed, the tasks were scheduled

using the proposed hybrid GA. A comparison has been

made with the latter results obtained which are

discussed in the next section. The algorithm was then

implemented by incorporating the heuristic ‘Shortest

Computation time First’ with GA. Set of tasks were

scheduled using the modified algorithm and the results

were observed. A comparison of the results observed

by considering the two heuristics separately with GA

has been presented in the following section.

4. Results and discussion

For an initial evaluation the fitness value by

assigning tasks based on Earliest Deadline First (EDF)

was calculated. For this, a task queue of 100 tasks was

generated randomly and it was divided into task sets of

20 each. The tasks were ordered in the increasing order

of their deadlines and assigned to processors

considering earliest deadline first. The processors were

chosen randomly between 1 and 10. The fitness value

obtained for each task set is shown in Figure 2. The

graph shows that the maximum number of tasks that

meet their deadlines is 16 when considering 20 tasks

for scheduling. The majority of the task sets gave a

fitness value of 12 (that is, 12 tasks out of 20 met their

deadlines).

Task Feasibility

0

5

10

15

20

1 1.5 2 2.5 3 3.5 4 4.5 5

Task se t

F
e

a
s

ib
il

it
y

GA

EDF

Figure 2. Task feasibility of EDF and GA.

The hybrid algorithm presented in the paper was

then used to schedule the same task sets. The algorithm

incorporates the heuristic ‘Earliest Deadline First’ and

also GA. Here also a set of 20 tasks was considered at a

time. The graph showing the fitness value of tasks

obtained using the algorithm is also shown in Figure 2.

As shown by the graph, a better performance is

obtained by using GA with the heuristic. Thus it could

be seen that, the percentage of tasks that are feasible is

95 percent and above.

The algorithm was also studied for different task

sets with the same chromosome size. In all the cases

the percentage of tasks that are feasible was always 90

percent and above when the chromosome size

considered was 20. The results obtained by varying the

chromosome size are discussed later. The above results

show that GA could be used to schedule task to meet

deadlines and also achieve better processor utilization.

However, it is worth noting that GAs do have the

disadvantage of spending much time in scheduling.

As mentioned earlier in the paper, the population

size for the GA was taken to be 30. In the initial

population the fitness value of chromosomes were low.

As the number of iterations increases a better solution

is obtained. The number of iterations considered for the

algorithm was 50.

A graph which depicts the change in the feasibility

value from the initial to the final iteration for a

particular task set of 20 tasks is shown in Figure 3. The

graph shows that the fitness value of chromosomes

changes gradually from a minimum value of 12 to a

maximum value of 20. Thus a better solution can be

obtained by applying GA for a good number of

iterations. The number of iterations needed for the GA

operators was based on a trial method. This was mainly

considered for the chromosome size 20. The results of

incorporating the heuristic ‘Earliest Deadline First’

with GA demonstrated better performance. This

motivated to study the efficiency of the algorithm by

incorporating other heuristics. The heuristic, Shortest

Computation time First (SCF) was incorporated with

GA for this.

Figure 3. Feasibility value vs change of
chromosomes in the population

For the study, the chromosome size was kept at 20.

The length of the task queue considered was 100, like

before. The algorithm was slightly modified to

incorporate SCF heuristic. In the case where the tasks

were sorted based on the deadline, the algorithm was

modified so that the tasks were sorted based on their

computation time. The tasks were sorted in the

increasing order of computation time. The fitness

function was not changed. It determines the number of

tasks that can be scheduled without missing their

deadline. It was seen that, the result was almost similar

to that obtained in the case of using earliest deadline

first, i.e., it gave almost similar performance.

It was then decided to change the length of the task

queue while maintaining the chromosome size at 20

and the not altering anything else. The results were

compared for the two cases, that is, using earliest

deadline first and shortest computation time first. The

task queue lengths considered were 100, 200, 400 and

600. The comparison of the heuristics has been made

based on the fitness value. As the chromosome size has

been fixed at 20, the maximum value for fitness that

can be obtained is 20. It could be seen that for all the

cases the number of tasks that were feasible was 90

percent and above for both the heuristics. This gives

the impression that the heuristic shortest computation

first could also be incorporated with GA to give

feasible solutions. The graph of the comparison is

shown in the Figure 4. The bar graph shown gives a

better overview of the results discussed above.

Task queue

0

5

10

15

20

25

30

SCF EDF SCF EDF

Chrom osom e s ize 20 Chrom osom e size 40

F
it

n
e
s
s
 v

a
lu

e

100
200
400
600

Figure 4. Comparative fitness values for
chromosome sizes 20 and 40.

The results were then compared for task queues of

different length by changing the chromosome size. The

lengths of task queue considered were same as before

namely, 100, 200, 400 and 600. The chromosome size

chosen were 40 and 60. Though both the heuristics

showed almost similar performance in the case of

chromosome size 20, the result was not same for higher

values of chromosome size. It could be seen that the

use of heuristic shortest computation time first gave

better fitness values compared to earliest deadline first

when incorporated with GA. This shows that the

heuristic shortest computation time first is a better

option for incorporating with GA. The comparison

graph which shows the heuristics based on fitness value

for chromosome size 40 is shown in Figure 4.

A study of the fitness value obtained for different

chromosome sizes has also been done. As mentioned

before, the fitness value denotes the number of tasks

that are feasible, out of a certain set of tasks considered

for scheduling. It is not however possible to schedule

all the tasks without missing deadlines when there are

resource restrictions as here, the number of processors

available is limited. The scheduling algorithm faces the

challenge to schedule maximum number of tasks using

the limited resources. It could be seen that as the

chromosome size is increased the number of tasks that

are feasible also increases slightly when the number of

processors considered is fixed. This is the case when

considering the heuristic shortest computation time

first. When comparing the results, shown in Table 1 it

could be seen that only 48 percent of the tasks could be

scheduled when the chromosome size is 60, whereas in

the case with chromosome size 20, nearly 100 percent

of the tasks could be scheduled. It should be mentioned

that the result considers a fixed number of processors,

i.e. 10. Thus a comparative study shows that best

results are obtained with chromosome size 20. It could

also be noted that better results are obtained when the

length of the task queue is 100.

From the above results it could be said that

traditional scheduling heuristics could be incorporated

with GA to schedule real-time tasks if the scheduling

time used by GA is reduced by some efficient method.

Table 1. Fitness value obtained for different
chromosome sizes.

Fitness value

Chromosome size 20 Chromosome size 40
Task

queue
SCF EDF SCF EDF

100 20 20 24 22

200 18 19 25 21

400 19 18 23 20

600 18 19 25 20

5. Conclusion and future work

Scheduling is an important topic that has

applicability in a wide variety of domains. Generally,

scheduling problems are NP-hard and there are no

general algorithms that can guarantee an optimal

solution. This is same in the case of scheduling real-

time tasks as well. The widely used algorithms for

scheduling real-time tasks have been discussed in the

paper. A hybrid GA for scheduling tasks in

multiprocessor system has been presented based on the

work done by Mahmood [5]. The paper has discussed

that GA incorporating traditional heuristics could be

used to obtain feasible solutions. A comparative

performance of using heuristics EDF and SCTF with

GA has been presented and discussed through a set of

experiments. It is noted that incorporating SCTF with

GA offered better performance as compared to the

EDF. The algorithm presented in the paper has been

successful in obtaining feasible solutions for a task set

of 20 and also achieving high utilization of processors.

It is noted that the implementation of the GA is quite

costly since populations of solutions are coupled with

computation intensive fitness evaluations. This can be

overcome by employing parallel processing technique

in multiprocessor computing domain.

References

[1] Ramamritham, K. and Stankovic, J. A., 1994,

Scheduling Algorithms and Operating Systems Support

for Real-time Systems, Proceedings of IEEE, Vol.82,

No.1, pp. 55-67.

[2] Cottet, F., Delacroix, J, Kaiser, C., Mammeri, Z. 2002,

Scheduling in Real-time Systems, John Wiley & Sons

Ltd, England, pp. 1-64.

[3] Eggers, E., January 1999, Dynamic Scheduling

Algorithms in Real-time, Multiprocessor Systems, Term

paper 1998-99, EECS Department, Milwaukee School

of Engineering, North Broadway, Milwaukee, WI, USA.

[4] Manimaran, G., Siva Ram Murthy, C., March 1998, An

Efficient Dynamic Scheduling Algorithm for

Multiprocessor Real-time Systems, IEEE Transactions

on Parallel and Distributed Systems, Vol.9, No.3,

pp.312-319.

[5] Mahmood, A., 2000, A Hybrid Genetic Algorithm for

Task Scheduling in Multiprocessor Real-Time Systems,

Journal of Studies in Informatics and Control, Vol.9,

No.3.

[6] Eggers, E., January 1999, Dynamic Scheduling

Algorithms in Real-time, Multiprocessor Systems, Term

paper 1998-99, EECS Department, Milwaukee School

of Engineering, North Broadway, Milwaukee, WI, USA.

[7] Srinivasan, A. and Anderson, J., H., 2005, Fair

scheduling of dynamic task systems on multiprocessors,

The Journal of Systems and Software, Vol. 77, pp. 67-

80.

[8] Nossal, R. and Galla, T., M., 1997, Solving NP-

Complete Problems in Real-Time System Design by

Multichromosome Genetic Algorithms. In Proceedings

of the SIGPLAN 1997 Workshop on Languages,

Compilers, and Tools for Real-Time Systems, pages 68-

76, ACM SIGPLAN, June 1997

[9] Page, A., J. and Naughton, T., J., 2005, Dynamic task

scheduling using genetic algorithms for heterogeneous

distributed computing, The proceedings of the 19th

International Parallel & Distributed Processing

Symposium, Denver, USA. IEEE Computer Society.

[10] Manimaran, G., Siva Ram Murthy, C., November 1998,

A Fault-tolerant Dynamic Scheduling Algorithm for

Multiprocessor Real-time Systems and its Analysis,

IEEE Transactions on Parallel and Distributed Systems,

Vol.9, No.11, pp.1137-1152.

