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Abstract 
 

Multiprocessors have emerged as a powerful 

computing means for running real-time applications, 

especially where a uniprocessor system would not be 

sufficient enough to execute all the tasks. The high 

performance and reliability of multiprocessors have 

made them a powerful computing resource. Such 

computing environment requires an efficient algorithm 

to determine when and on which processor a given 

task should execute. This paper investigates dynamic 

scheduling of real-time tasks in a multiprocessor 

system to obtain a feasible solution using genetic 

algorithms combined with well-known heuristics, such 

as ‘Earliest Deadline First’ and ‘Shortest Computation 

Time First’. A comparative study of the results 

obtained from simulations shows that genetic 

algorithm can be used to schedule tasks to meet 

deadlines, in turn to obtain high processor utilization.  

 

1. Introduction 
 

Real-time systems are software systems in which the 

time at which the result is produced is as important as 

the logical correctness of the result [1]. That is, the 

quality of service provided by the real-time computing 

system is assessed based on the main constraint ‘time’. 

Real-time applications span a large range of activities 

which include production automation, embedded 

systems, telecommunication systems, nuclear plant 

supervision, surgical operation monitoring, scientific 

experiments, robotics and banking transactions [2]. 

Scheduling is an important aspect in real-time 

systems to ensure soft/hard timing constraints. 

Scheduling tasks involves the allotment of resources 

and time to tasks, to satisfy certain performance needs 

[1]. In a real-time application, real-time tasks are the 

basic executable entities that are scheduled [2]. The 

tasks may be periodic or aperiodic and may have soft 

or hard real-time constraints. Scheduling a task set 

consists of planning the order of execution of task 

requests so that the timing constraints are met. 

Multiprocessors have emerged as a powerful 

computing means for running real-time applications, 

especially where a uniprocessor system would not be 

sufficient enough to execute all the tasks by their 

deadlines [3]. The high performance and reliability of 

multiprocessors have made them a powerful computing 

means in time-critical applications [4].  

Real-time systems make use of scheduling 

algorithms to maximize the number of real-time tasks 

that can be processed without violating timing 

constraints [5]. A scheduling algorithm provides a 

schedule for a task set that assigns tasks to processors 

and provides an ordered list of tasks. The schedule is 

said to be feasible if the timing constraints of all the 

tasks are met [2]. All scheduling algorithms face the 

challenge of creating a feasible schedule. 

In multiprocessor real-time systems static algorithms 

are used to schedule periodic tasks whose 

characteristics are known a priori. Scheduling of 

aperiodic tasks whose characteristics are not known a 

priori requires dynamic scheduling algorithms [4]. 

Dynamic scheduling can be either centralized or 

distributed. In a distributed dynamic scheduling 

scheme, each processor has its own local scheduler that 

determines whether it can satisfy the requirements of 

the incoming task. If it cannot satisfy, then the 

scheduler tries to find another processor which can 

handle the task. In a centralized dynamic scheduling 

scheme, there is a central processor called the 

scheduler which determines which processor the task 

should be allocated for execution [4, 6]. Srinivasan and 

Anderson [7] have studied the dynamic scheduling of  

task systems on multiprocessors, considering the tasks 



that are allowed to join and leave the system. The two 

main objectives of task scheduling in real-time systems 

are meeting deadlines and achieving high resource 

utilization [4].  

Various heuristic approaches have been widely used 

for scheduling. The use of genetic algorithm (GA) for 

real-time task scheduling is now been studied 

extensively. GAs seem attractive to real-time 

application designer as it relieves the designer from 

knowing how to construct a solution and the designer 

just requires knowing how to assess a given solution 

[8]. Page and Naughton presented a scheduling strategy 

which makes use of a GA to dynamically schedule 

heterogeneous tasks on heterogeneous processors in a 

distributed system [9]. Genetic algorithm has been 

utilized to minimize the total execution time. The 

simulation studies presented shows the efficiency of the 

scheduler compared to a number of other schedulers. 

However the efficiency of the algorithm for time 

critical applications has not been studied. A good 

tradeoff between exploitation and exploration in GA 

allows to accelerate the search, which is interesting in 

case of real-time scheduling. 

This paper proposes using genetic algorithm 

incorporating traditional scheduling heuristics to 

generate a feasible schedule based on the work done by 

Mahmood [6]. The scheduling algorithm considered, 

aims in meeting deadlines and achieving high 

utilization of processors. The paper also aims to 

provide a comparative study of incorporating heuristics 

such as ‘Earliest Deadline First (EDF)’ and ‘Shortest 

Computation Time First (SCTF)’ separately with 

genetic algorithms. The scheduler model considered for 

the study would contain task queues from which tasks 

would be assigned to processors. Task queues of 

varying length would be generated at run time. From 

the task queue only a set of tasks would be considered 

at a time for scheduling. The size of the task sets 

considered for scheduling would also be varied for a 

comparative study. 

 

2. Task and scheduler models 
 

The real-time system is assumed to consist of m, 

where m > 1, identical processors for the execution of 

the scheduled tasks. They are assumed to be connected 

through a shared medium. The scheduler may assign a 

task to any one of the processors. Each task Ti in the 

task set is considered to be aperiodic, independent and 

nonpreemptive. Each task Ti is characterised by: Ai  : 

arrival time; Ri: ready time; Ci : worst case computation 

time;  Di : deadline. 

The scheduler determines the scheduled start time 

and finish time of a task. If st(Ti) is the scheduled start 

time and ft(Ti) is the scheduled finish time of task Ti , 

then the task  Ti is said to meet its deadline if (Ri ≤  
st(Ti) ≤ Di – Ci) and  (Ri + Ci ≤  ft(Ti) ≤ Di). That is, the 

tasks are scheduled to start after they arrive and finish 

execution before their deadlines [3]. A set of such tasks 

can be said to be guaranteed. 

The static code analysis and the average of 

execution times under possible worst cases help to 

obtain the worst case computation time of a task. The 

actual computation time of a task could be more or less 

than its worst case computation time [10]. It is possible 

that the actual computation time is less than its worst 

case computation time due to various factors like 

dependable loops and conditional statements. The 

architectural features of the system such as cache hits 

and dynamic branch prediction may also account for 

the change in the actual computation time. There might 

also be cases where the actual computation time of a 

task is more than its worst case computation time. 

Manimaran and Murthy [10] have referred techniques 

such as “Task Pair” scheme to handle such situations. 

The tasks in the system are assumed to be 

nonpreemptive so that when a task starts execution on a 

processor, it finishes to its completion. Tasks may also 

have precedence constraints. This could be 

incorporated by modifying the ready time and 

deadlines of tasks so that they comply with the 

precedence constraints among them. As dealing with 

precedence constraints is equivalent to working with 

modified ready times and deadlines it could be applied 

for the tasks in the presented system. However this has 

not been done explicitly for the simulation study 

presented so the tasks are assumed to be independent.  

This paper assumes a centralized scheduling scheme 

with each processor executing the tasks that fill its 

dispatch queue. The incoming tasks are held in the task 

queue and then passed on to the scheduler for 

scheduling of tasks. It is the central scheduler that 

allocates the incoming tasks to other processors in the 

system. Each processor has a dispatch queue associated 

with it. The processor executes tasks in the order they 

arrive in the dispatch queue. The communication 

between the scheduler and the processors is through 

these dispatch queues. The scheduler works in parallel 

with the processors. The scheduler schedules the newly 

arriving tasks and updates the dispatch queue while the 

processors execute the tasks assigned to them. The 

scheduler makes sure that the dispatch queues of the 

processors are filled with a minimum number of tasks 

so that the processors will always have some tasks to 

execute after they have finished with their current tasks.  



The minimum capacity of the dispatch queues 

depends on factors like the worst case time complexity 

of the scheduler to schedule newly arriving tasks [10]. 

A feasible schedule is determined by the scheduler 

based on the worst case computation time of tasks 

satisfying their timing constraints.  

The scheduler model showing the parallel execution 

of scheduler and processors in a centralized scheduling 

scheme is shown in Figure 1. The scheduling algorithm 

to be discussed has full knowledge about the set of 

tasks that are currently active. But it does not have 

knowledge about the new tasks that arrive while 

scheduling the current task set.  

 

 
Figure 1. The scheduler model. 

 

The objective of the dynamic scheduling is to 

improve or maximize what is called the guarantee ratio. 

It is defined as the percentage of tasks arrived in the 

system whose deadlines are met. The scheduler in the 

system must also guarantee that the tasks already 

scheduled will meet their deadlines. 

 

3. Implementation of scheduling algorithm 
 

Initially a task queue is generated with tasks having 

the following characteristics namely, arrival time, ready 

time, worst case computation time and deadline. The 

tasks are sorted in the increasing order of their 

deadlines. The tasks are ordered so that the task with 

the earliest deadline can be considered first for 

scheduling. The algorithm considers a set of tasks from 

the sorted list to generate an initial population. In the 

initial population, each chromosome is generated by 

assigning each task in the task set to a randomly 

selected processor and the pair (task, processor) is 

inserted in a randomly selected unoccupied locus of the 

chromosome. The size of the chromosome depends on 

the number of tasks selected from the sorted list. This 

ensures that part of the chromosome does not remain 

empty. The tasks in each chromosome are then sorted 

based on their deadline. This is done because the 

chromosome representation also gives the order in 

which the tasks are executed in a processor. The sorting 

ensures that the tasks with earliest deadline are given 

priority. The fitness evaluation of the chromosomes in 

the population is then performed. This helps to 

determine the number of tasks in each chromosome that 

meet their deadlines. The chromosomes in the 

population are then sorted based on the fitness values. 

The chromosomes are sorted in the descending order of 

their fitness value. 

GA operators are then applied to the population of 

chromosomes until a maximum number of iterations 

have been completed. When applying GA operators to 

the population, reproduction is applied first followed 

by crossover, partial-gene mutation, sublist-based 

mutation and then order-based mutation. In each 

iteration, the tasks in the chromosomes are sorted based 

on their deadline and the evaluation of the 

chromosomes and sorting of the chromosomes based 

on fitness value is performed. After number of 

iterations the best schedule for the set of tasks is 

obtained.  

The steps in the scheduling algorithm explained 

above could be summarized as follows: 

1. Generate a task queue 

2. Sort the tasks in the increasing order of their 

deadlines 

3. Select a suitable number of tasks for a fixed 

chromosome size 

4. Generate chromosomes for the population  

5. Sort the genes in each chromosome based on 

deadline 

6. Determine the fitness value of each chromosome in 

the population 

7. Sort the chromosomes within the population 

depending on fitness value 

8. Apply GA operators for a number of iterations: 

Sort the genes in each chromosome based on 

deadline; Determine the fitness value of each 

chromosome in the population; Sort the 

chromosomes within the population depending on 

fitness value. 

9. Choose the best chromosome  

The tasks that are found infeasible are removed 

from the chromosomes so that they are not 

reconsidered for scheduling. For a task Ti to be feasible 

it should satisfy the condition that (Ri ≤  st(Ti) ≤ Di – 

Ci) and  (Ri + Ci ≤  ft(Ti) ≤ Di) where Ri is the ready 

time,  Di is the deadline and Ci is the worst case 

computation time of task Ti . st(Ti) and ft(Ti) denoted 

the start time and finish time of task Ti respectively. If 

the condition is not satisfied it is said to be infeasible. 

The effectiveness of the scheduling algorithm was 

studied by conducting simulation studies. The various 



parameters that have been used in the implementation 

of the algorithm are discussed in this section. The 

simulation study considers the assigning of a set of 

tasks to a number of processors. For these, task queues 

of different lengths were generated at run time from 

which a set of tasks were chosen at a time for 

scheduling. The lengths of task queues considered were 

100, 200, 400 and 600. The worst case computation 

time, Ci, of a task Ti has been chosen randomly 

between a minimum and maximum computation time 

value denoted by MIN_C and MAX_C. The values of 

MIN_C and MAX_C were set to 30 and 60 

respectively. The value for the deadline of a task Ti has 

been randomly chosen between (Ri + 2 * Ci) and (Ri + 

r * Ci) where r ≥ 2. This ensures that the computation 

time is always less than the deadline. For the study, the 

value of r has been chosen to be 3. The mean of the 

arrival time was assumed to be 0.05. The number of 

processors, m considered was 10.  

The values for the number of iterations for the 

application of the GA operators have been based on 

number of trials. For the value of ‘x’, which denotes the 

percentage of tasks to be killed before applying 

reproduction operator, it has been reported in [5] that 

best results were obtained with x = 20. Therefore the 

value of 20 percent has been considered for the 

algorithm presented in the paper. The chromosome size 

has been assumed equal to the number of tasks 

considered at a time for scheduling. Depending on this, 

the value for the chromosome size has been varied 

between 20 and 60. As mentioned before the fitness 

value determines the number of tasks in the 

chromosome that can meet their deadlines. That is the 

number of tasks that are feasible.  Hence here, for 

chromosome size 20 the maximum fitness value that 

can be obtained is 20. The population size for the 

algorithm has been assumed to be 30. That is 30 

chromosomes have been considered at a time for the 

application of GA operators. Thus the tasks which have 

been generated with the values for their characteristics 

chosen appropriately have been considered for 

scheduling. Initially the tasks were assigned to 

processors based on ‘Earliest Deadline First’. After the 

results have been observed, the tasks were scheduled 

using the proposed hybrid GA. A comparison has been 

made with the latter results obtained which are 

discussed in the next section. The algorithm was then 

implemented by incorporating the heuristic ‘Shortest 

Computation time First’ with GA. Set of tasks were 

scheduled using the modified algorithm and the results 

were observed. A comparison of the results observed 

by considering the two heuristics separately with GA 

has been presented in the following section. 

4. Results and discussion 
  

For an initial evaluation the fitness value by 

assigning tasks based on Earliest Deadline First (EDF) 

was calculated. For this, a task queue of 100 tasks was 

generated randomly and it was divided into task sets of 

20 each. The tasks were ordered in the increasing order 

of their deadlines and assigned to processors 

considering earliest deadline first. The processors were 

chosen randomly between 1 and 10. The fitness value 

obtained for each task set is shown in Figure 2. The 

graph shows that the maximum number of tasks that 

meet their deadlines is 16 when considering 20 tasks 

for scheduling. The majority of the task sets gave a 

fitness value of 12 (that is, 12 tasks out of 20 met their 

deadlines). 
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Figure 2. Task feasibility of EDF and GA. 
 

The hybrid algorithm presented in the paper was 

then used to schedule the same task sets. The algorithm 

incorporates the heuristic ‘Earliest Deadline First’ and 

also GA. Here also a set of 20 tasks was considered at a 

time. The graph showing the fitness value of tasks 

obtained using the algorithm is also shown in Figure 2. 

As shown by the graph, a better performance is 

obtained by using GA with the heuristic. Thus it could 

be seen that, the percentage of tasks that are feasible is 

95 percent and above.  

The algorithm was also studied for different task 

sets with the same chromosome size. In all the cases 

the percentage of tasks that are feasible was always 90 

percent and above when the chromosome size 

considered was 20. The results obtained by varying the 

chromosome size are discussed later. The above results 

show that GA could be used to schedule task to meet 

deadlines and also achieve better processor utilization. 

However, it is worth noting that GAs do have the 

disadvantage of spending much time in scheduling.  

As mentioned earlier in the paper, the population 



size for the GA was taken to be 30. In the initial 

population the fitness value of chromosomes were low. 

As the number of iterations increases a better solution 

is obtained. The number of iterations considered for the 

algorithm was 50.  

A graph which depicts the change in the feasibility 

value from the initial to the final iteration for a 

particular task set of 20 tasks is shown in Figure 3. The 

graph shows that the fitness value of chromosomes 

changes gradually from a minimum value of 12 to a 

maximum value of 20. Thus a better solution can be 

obtained by applying GA for a good number of 

iterations. The number of iterations needed for the GA 

operators was based on a trial method. This was mainly 

considered for the chromosome size 20. The results of 

incorporating the heuristic ‘Earliest Deadline First’ 

with GA demonstrated better performance. This 

motivated to study the efficiency of the algorithm by 

incorporating other heuristics. The heuristic, Shortest 

Computation time First (SCF) was incorporated with 

GA for this.  

 
 

Figure 3. Feasibility value vs change of 
chromosomes in the population 

 

For the study, the chromosome size was kept at 20. 

The length of the task queue considered was 100, like 

before. The algorithm was slightly modified to 

incorporate SCF heuristic. In the case where the tasks 

were sorted based on the deadline, the algorithm was 

modified so that the tasks were sorted based on their 

computation time. The tasks were sorted in the 

increasing order of computation time. The fitness 

function was not changed. It determines the number of 

tasks that can be scheduled without missing their 

deadline. It was seen that, the result was almost similar 

to that obtained in the case of using earliest deadline 

first, i.e., it gave almost similar performance.  

It was then decided to change the length of the task 

queue while maintaining the chromosome size at 20 

and the not altering anything else. The results were 

compared for the two cases, that is, using earliest 

deadline first and shortest computation time first. The 

task queue lengths considered were 100, 200, 400 and 

600. The comparison of the heuristics has been made 

based on the fitness value. As the chromosome size has 

been fixed at 20, the maximum value for fitness that 

can be obtained is 20. It could be seen that for all the 

cases the number of tasks that were feasible was 90 

percent and above for both the heuristics. This gives 

the impression that the heuristic shortest computation 

first could also be incorporated with GA to give 

feasible solutions. The graph of the comparison is 

shown in the Figure 4. The bar graph shown gives a 

better overview of the results discussed above. 
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Figure 4. Comparative fitness values for 
chromosome sizes 20 and 40. 

The results were then compared for task queues of 

different length by changing the chromosome size. The 

lengths of task queue considered were same as before 

namely, 100, 200, 400 and 600. The chromosome size 

chosen were 40 and 60. Though both the heuristics 

showed almost similar performance in the case of 

chromosome size 20, the result was not same for higher 

values of chromosome size. It could be seen that the 

use of heuristic shortest computation time first gave 

better fitness values compared to earliest deadline first 

when incorporated with GA. This shows that the 

heuristic shortest computation time first is a better 

option for incorporating with GA. The comparison 

graph which shows the heuristics based on fitness value 

for chromosome size 40 is shown in Figure 4. 

A study of the fitness value obtained for different 

chromosome sizes has also been done. As mentioned 



before, the fitness value denotes the number of tasks 

that are feasible, out of a certain set of tasks considered 

for scheduling. It is not however possible to schedule 

all the tasks without missing deadlines when there are 

resource restrictions as here, the number of processors 

available is limited. The scheduling algorithm faces the 

challenge to schedule maximum number of tasks using 

the limited resources. It could be seen that as the 

chromosome size is increased the number of tasks that 

are feasible also increases slightly when the number of 

processors considered is fixed. This is the case when 

considering the heuristic shortest computation time 

first. When comparing the results, shown in Table 1 it 

could be seen that only 48 percent of the tasks could be 

scheduled when the chromosome size is 60, whereas in 

the case with chromosome size 20, nearly 100 percent 

of the tasks could be scheduled. It should be mentioned 

that the result considers a fixed number of processors, 

i.e. 10. Thus a comparative study shows that best 

results are obtained with chromosome size 20. It could 

also be noted that better results are obtained when the 

length of the task queue is 100. 

From the above results it could be said that 

traditional scheduling heuristics could be incorporated 

with GA to schedule real-time tasks if the scheduling 

time used by GA is reduced by some efficient method. 

 

Table 1. Fitness value obtained for different 
chromosome sizes. 

 

Fitness value 

Chromosome size 20 Chromosome size 40 
Task 

queue 
SCF EDF SCF EDF 

100 20 20 24 22 

200 18 19 25 21 

400 19 18 23 20 

600 18 19 25 20 

 

5. Conclusion and future work 
 

Scheduling is an important topic that has 

applicability in a wide variety of domains. Generally, 

scheduling problems are NP-hard and there are no 

general algorithms that can guarantee an optimal 

solution. This is same in the case of scheduling real-

time tasks as well. The widely used algorithms for 

scheduling real-time tasks have been discussed in the 

paper. A hybrid GA for scheduling tasks in 

multiprocessor system has been presented based on the 

work done by Mahmood [5]. The paper has discussed 

that GA incorporating traditional heuristics could be 

used to obtain feasible solutions. A comparative 

performance of using heuristics EDF and SCTF with 

GA has been presented and discussed through a set of 

experiments. It is noted that incorporating SCTF with 

GA offered better performance as compared to the 

EDF. The algorithm presented in the paper has been 

successful in obtaining feasible solutions for a task set 

of 20 and also achieving high utilization of processors. 

It is noted that the implementation of the GA is quite 

costly since populations of solutions are coupled with 

computation intensive fitness evaluations. This can be 

overcome by employing parallel processing technique 

in multiprocessor computing domain. 

 

References 
 
[1] Ramamritham, K. and Stankovic, J. A., 1994, 

Scheduling Algorithms and Operating Systems Support 

for Real-time Systems, Proceedings of IEEE, Vol.82, 

No.1, pp. 55-67. 

[2] Cottet, F., Delacroix, J, Kaiser, C., Mammeri, Z. 2002,  

Scheduling in Real-time Systems, John Wiley & Sons 

Ltd, England, pp. 1-64. 

[3] Eggers, E., January 1999, Dynamic Scheduling 

Algorithms in Real-time, Multiprocessor Systems, Term 

paper 1998-99, EECS Department, Milwaukee School 

of Engineering, North Broadway, Milwaukee, WI, USA. 

[4] Manimaran, G., Siva Ram Murthy, C., March 1998, An 

Efficient Dynamic Scheduling Algorithm for 

Multiprocessor Real-time Systems, IEEE Transactions 

on Parallel and Distributed Systems, Vol.9, No.3, 

pp.312-319. 

[5] Mahmood, A., 2000, A Hybrid Genetic Algorithm for 

Task Scheduling in Multiprocessor Real-Time Systems, 

Journal of Studies in Informatics and Control, Vol.9, 

No.3. 

[6] Eggers, E., January 1999, Dynamic Scheduling 

Algorithms in Real-time, Multiprocessor Systems, Term 

paper 1998-99, EECS Department, Milwaukee School 

of Engineering, North Broadway, Milwaukee, WI, USA. 

[7] Srinivasan, A. and Anderson, J., H., 2005, Fair 

scheduling of dynamic task systems on multiprocessors, 

The Journal of Systems and Software, Vol. 77, pp. 67-

80. 

[8] Nossal, R. and Galla, T., M., 1997, Solving NP-

Complete Problems in Real-Time System Design by 

Multichromosome Genetic Algorithms.  In Proceedings 

of the SIGPLAN 1997 Workshop on Languages, 

Compilers, and Tools for Real-Time Systems, pages 68-

76, ACM SIGPLAN, June 1997 

[9] Page, A., J. and Naughton, T., J., 2005, Dynamic task 

scheduling using genetic algorithms for heterogeneous 

distributed computing, The proceedings of the 19th 

International Parallel & Distributed Processing 

Symposium, Denver, USA. IEEE Computer Society.  

[10] Manimaran, G., Siva Ram Murthy, C., November 1998, 

A Fault-tolerant Dynamic Scheduling Algorithm for 

Multiprocessor Real-time Systems and its Analysis, 

IEEE Transactions on Parallel and Distributed Systems, 

Vol.9, No.11, pp.1137-1152.  


