
Intelligent Web Caching Using Adaptive Regression
Trees, Splines, Random Forests and Tree Net

Sarina Sulaiman, Siti Mariyam Shamsuddin
Soft Computing Research Group

Faculty of Computer Science and Information Systems
Universiti Teknologi Malaysia, Johor, Malaysia

sarina@utm.my, mariyam@utm.my

Ajith Abraham
Machine Intelligence Research Labs (MIR Labs)

Washington 98092, USA
http://www.mirlabs.org
ajith.abraham@ieee.org

Abstract— Web caching is a technology for improving network
traffic on the internet. It is a temporary storage of Web objects
(such as HTML documents) for later retrieval. There are three
significant advantages to Web caching; reduced bandwidth
consumption, reduced server load, and reduced latency. These
rewards have made the Web less expensive with better
performance. The aim of this research is to introduce advanced
machine learning approaches for Web caching to decide either to
cache or not to the cache server, which could be modelled as a
classification problem. The challenges include identifying attributes
ranking and significant improvements in the classification
accuracy. Four methods are employed in this research;
Classification and Regression Trees (CART), Multivariate Adaptive
Regression Splines (MARS), Random Forest (RF) and TreeNet
(TN) are used for classification on Web caching. The experimental
results reveal that CART performed extremely well in classifying
Web objects from the existing log data and an excellent attribute to
consider for an accomplishment of Web cache performance
enhancement.

Keywords-component; Data mining; Web caching; classification

I. INTRODUCTION
Caching operation can be executed at the client application,

and is generally it is embedded in most Web browsers. There are
a number of products that extend or replace the embedded
caches with systems that contain larger storage, more features, or
better performance. In any cases, these systems only cache net
objects from many servers for a single user.

Caching can also be operated between the client and the
server as a part of proxy cache, which is often located close to
network gateways to decrease the bandwidth connections. These
systems can serve many users (clients) with cached objects from
many servers. In fact, the usefulness of web caching (reportedly
up to 80% for some installations) is in caching objects requested
by one client for later retrieval by another client. Even for better
performance, many proxy caches are part of cache hierarchies; a
cache can appeal neighbouring caches for a requested document
to lessen the need for direct fetching.

Furthermore, caches can be situated directly in front of a
particular server in order to reduce the number of requests that
the server must handle. Most proxy caches can be used in this
fashion with different names; reverse cache, inverse cache, or

sometimes httpd accelerator, to replicate the fact that it caches
objects for many clients but normally from one server [1]. This
paper investigates the performance of Classification and
Regression Trees (CART), Multivariate Adaptive Regression
Splines (MARS), Random Forest (RF) and TreeNet (TN) for
classification in Web caching.

The rest of the paper is organised as follows: Section 2
describes the related works, followed by introduction about the
machine learning approaches in Section 3. Section 4 on
experimental setup and Section 5 illustrates the performance
evaluation of the proposed approaches. Section 6 discusses the
result from the experiment and finally, Section 7 concludes the
article.

II. RELATED WORKS
Many researchers have looked for ways to improve current

caching techniques. Padmanabhan and Mogul [2] proposed
predictive model to be used as server hint. The proposed model
is equipped with server that is able to create Markov model by
predicting probability of object A will be tag along, with next n
requests and object B (n is a parameter of the algorithm). The
server will use the model to produce a forecast for subsequent
references and throw the forecast to the client. The client will
use forecast result to pre-fetch an object on the server if only that
object is not in the client cache. The simulation done was able to
reduce the latency until 45%. However, their technique has a
limitation as it also makes network traffic larger by two times
[2]. That is why a lot of people try to find latency and network
reduction at the same time.

Bestavros and Cunha [3] have presented a model for the
speculative dissemination of World Wide Web data. His work
illustrates that reference patterns from a Web server can be used
as a key information source for pre-fetching. They also
investigate that latency reduction increases until 50%, though it
still increases the bandwidth utilisation.

On the other hand, Pallis et al. [4] has proposed a pre-
fetching based on the clustering method. Web pre-fetching is an
attractive solution to reduce the network resources consumed by
Web services as well as the access latencies perceived by Web
users. Unlike Web caching, which exploits the temporal locality,
Web pre-fetching utilises the spatial locality of Web objects.
Specifically, Web pre-fetching fetches objects that are likely to

be accessed in the near future and stores them in advance. In this
context, a sophisticated combination of these two techniques
may cause significant improvements on the performance of the
Web infrastructure.

Kroeger et al. [5] observed a local proxy caching which is
able to decrease latency until 26%, while pre-fetching could
decrease latency at 57%. The combination of both of them will
give better latency reduction until 60%. Furthermore, he had also
found that algorithm on pre-fetching has contribution on
reducing latency. From his work, it also explained that pre-
fetching can provide double improvement on caching. However,
it is only for decreasing the latency.

Xu et al. in [6] proposed solutions by creating proxy
management. The Caching dynamic content is obtained by
generating data and personalise data that contributes up to 30-
40% of the total traffic. These types of data are normally
identified as “uncachable”. To further improve Web
performance, reverse caching has also been suggested to make
more dynamic content cachable and manageable [4]. Xu et al.
[6] also proposed collaboration among proxies is based on the
premise that it would be faster and cheaper to fetch an object
from another close proxy rather than the origin server. See Fig. 1
for the cooperative cache organization. However, the challenge
still stuck on how to efficiently maintain consistency between
the cached content and the data source that frequently change.
Another important issue is the analysis of query semantics to
evaluate a complex query over the cached content.

Figure 1. Examples of different cooperative cache organizations. [6]

Caching streaming objects: It is predicted that streaming
media such as music or video clips will symbolize a significant
portion of Web traffic over the Internet. Due to the distinct
features of streaming objects like big size, long duration,
intensive use of bandwidth, and interactivity, conventional proxy
caching techniques are not able to solve this problem. To solve
these problems, many partial caching algorithms have been
proposed in recent years [7,8]. The proposed algorithms
expressed that even if small size of video is stock up on the
proxy, the consumption of network will be reduced significantly.

Teng et al., in [9] proposed a combination between Web
caching and Web pre-fetching. These two techniques can go
together since the Web caching technique use the temporal
locality while Web pre-fetching technique utilizes the spatial
locality of Web objects. The proposed technique is obtained by
evaluating the pre-fetching rules.

Lots of future works have been drawn by previous
researchers especially on clustering pre-fetching, caching on

proxy level or even designing cache organization. Considering
that there have been several caching policies proposed in the
past, the challenge is to extend them by using data mining
techniques. It presented a clustering-based pre-fetching scheme
where a graph-based clustering algorithm identifies clusters of
‘‘correlated’’ Web pages based on the users’ access patterns and
to create adaptive websites [10].

Nevertheless, this research has proposed a scheme that can be
realise to integrate data mining techniques into a cache server for
Web object classification thus improving its performance.
Through a simulation environment, using a real data set, CART,
MARS, RF and TN can be an effective way in improving the
performance of the Web caching environment.

In this research, real data set were used for classification of
Web object data based on two different Web log data; Boston
University (BU) and E-learning@UTM (EL). According to the
related work, the issues of performance to classify the Web
objects and implementation on cache server were highlighted.

III. MACHINE LEARNING APPROACHES

3.1. CART
Classification and Regression Trees (CART) is a robust

decision-tree tool for data mining, pre-processing and predictive
modelling, suggested by Breiman et al. [11]. CART can be used
by complex data for patterns and relationships and uncovering a
hidden structure [12]. Moreover, it is a nonparametric technique
that can select from among a large number of variables, and their
interactions that are most important in determining the outcome
variable to be explained.

Decision Tree (DT) induction is one of the classification
algorithms in data mining. The classification algorithm is
inductively learned to construct a model from the pre-classified
data set. Inductive learning means making general assumptions
from the specific examples in order to use those assumptions to
classify unseen data. The inductively learned model of
classification algorithm is known as classifier. Classifier may be
viewed as mapping from a set of attributes to a particular class.
Data items are defined by the values of their attributes and X is
the vector of their values {x1, x2 ….xn}, where the value is either
numeric or nominal. Attribute space is defined as the set
containing all possible attribute vectors and is denoted by Z.
Thus X is an element of Z (X∈Z). The set of all classes is
denoted by C = {c1, c2,...,cn}. A classifier assigns a class c ∈ C
to every attribute of the vector X∈Z. The classifier can be
considered as a mapping f, where f: X C. This classifier is
used to classify the unseen data with a class label. A decision
tree classifies the given data item using the values of its
attributes. The decision tree is initially constructed from a set of
pre-classified data. Each data item is defined by values of the
attributes.

The main issue is to select the attributes which best divides
the data items into their classes. According to the values of these
attributes the data items are partitioned. This process is
recursively applied to each partitioned subset of the data items.

The process terminates when all the data items in the current
subset belongs to the same class.

A decision tree consists of nodes, leaves and edges. A node
of a decision tree specifies an attribute by which the data is to be
partitioned. Each node has a number of edges, which are labelled
according to a possible value of edges and a possible value of
the attribute in the parent node. An edge connects either two
nodes or a node and a leaf. Leaves are labelled with a decision
value for categorization of the data. Induction of the decision
tree uses the training data, which is described in terms of the
attributes. The main problem here is deciding the attribute,
which will best partition the data into various classes.

3.2. MARS
Multivariate Adaptive Regression Splines (MARS) model is

a spline regression model that uses a specific class of basis
functions as predictors in place of the original data [13,14]. The
MARS basis function transform makes it possible to selectively
blank out certain regions of a variable by making them zero,
allowing MARS to focus on specific sub-regions of the data.
MARS excels at finding optimal variable transformations and
interactions, as well as the complex data structure that often
hides in high-dimensional data.

Given the number of predictors in most data mining
applications, it is infeasible to approximate a function y=f(x) in a
generalization of splines by summarizing y in each distinct
region of x. Even if we could assume that each predictor x had
only two distinct regions, a database with just 35 predictors
would contain 235 or more than 34 billion regions. This is
known as the curse of dimensionality. For some variables, two
regions may not be enough to track the specifics of the function.
If the relationship of y to some x's is different in three or four
regions, for example, with only 35 variables the number of
regions requiring examination would be even larger than 34
billion. Given that neither the number of regions nor the knot
locations can be specified a priori, a procedure is needed that
accomplishes the following:

• judicious selection of which regions to look at and their
boundaries, and

• judicious determination of how many intervals are
needed for each variable.

A successful method of region selection will need to be
adaptive to the characteristics of the data. Such a solution will
probably reject quite a few variables (accomplishing variable
selection) and will take into account only a few variables at a
time (also reducing the number of regions).

A key concept underlying the spline is the knot, which marks
the end of one region of data and the beginning of another. Thus,
the knot is where the behaviour of the function changes.
Between knots, the model could be global (e.g., linear
regression). In a classical spline, the knots are predetermined and
evenly spaced, whereas in MARS, the knots are determined by a
search procedure. Only as many knots as needed are included in
a MARS model. If a straight line is a good fit, there will be no
interior knots. In MARS, however, there is always at least one

"pseudo" knot that corresponds to the smallest observed value of
the predictor.

In MARS, Basis Functions (BFs) are the machinery used for
generalizing the search for knots. BFs are a set of functions used
to represent the information contained in one or more variables.
Much like principal components, BFs essentially re-express the
relationship of the predictor variables with the target variable.
The hockey stick BF, the core building block of the MARS
model is often applied to a single variable multiple times. The
hockey stick function maps variable X to new variable X*:

max (0, X -c), or max (0, c - X)

In the first form, X* is set to 0 for all values of X up to some
threshold value c and X* is equal to X for all values of X greater
than c (actually X* is equal to the amount by which X exceeds
threshold c). The second form generates a mirror image of the
first. It starts with a constant in the model and then begins the
search for a variable-knot combination that improves the model
the most (or, alternatively, worsens the model the least). The
improvement is measured in part by the change in Mean Squared
Error (MSE). Adding a basis function always reduces the MSE.
MARS searches for a pair of hockey stick basis functions, the
primary and mirror image, even though only one might be
linearly independent of the other terms. This search is then
repeated, with MARS searching for the best variable to add
given the basis functions already in the model. The brute search
process theoretically continues until every possible basis
function has been added to the model.

In practice, the user specifies an upper limit for the number
of knots to be generated in the forward stage. The limit should
be large enough to ensure that the true model can be captured. A
good rule of thumb for determining the minimum number is
three to four times the number of basis functions in the optimal
model. This limit may have to be set by trial and error.

3.3. RF
The Random Forests (RF) algorithm was proposed by Leo

Breiman in 1999[15]. The algorithm can be used for both
regression and classification, as well as for variable selection,
interaction detection, clustering etc. This technology represents a
substantial advance in data mining technology and it is based on
novel ways of combining information from a number of decision
trees [11] [15].

A Decision Tree Forest (DTF) is an ensemble (collection) of
decision trees whose predictions are combined to make the
overall prediction for the forest. A decision tree forest grows a
number of independent trees in parallel, and they do not interact
until after all of them have been built. Decision tree forest
models often have a degree of accuracy that cannot be obtained
using a large, single-tree model. An outline of the algorithm
used to construct a decision tree forest consisting of N
observations is given below:

(1) Take a random sample of N observations from the data set
with replacement. Some observations will be selected more
than once, and others will not be selected. On average, about
2/3 of the rows will be selected by the sampling. The

remaining 1/3 of the rows are called the out of bag rows. A
new random selection of rows is performed for each tree
constructed.

(2) As the tree is built, allow only a subset of the total set of
predictor variables to be considered as possible splitters for
each node. Select the set of predictors to be considered as a
random subset of the total set of available predictors. For
example, if there are ten predictors, choose a random five as
candidate splitters. Perform a new random selection for each
split. Some predictors (possibly the best one) will not be
considered for each split, but a predictor excluded from one
split may be used for another split in the same tree.

(1) and (2) are repeated a large number of times to construct a
forest of trees.

Decision tree forests have two stochastic elements: (1) the
selection of data rows used as input for each tree, and (2) the set
of predictor variables considered as candidates for each node
split. For reasons that are not well understood, these
randomizations along with combining the predictions from the
trees significantly improve the overall predictive accuracy.

3.4. TN
TreeNet (TN) is a robust multi-tree technology for data

mining, predictive modelling and data processing. This
technology is an exclusive implementation of Jerome Friedman’s
MART methodology [16]. It offers exceptional accuracy, blazing
speed, and a high degree of fault tolerance for dirty and
incomplete data. It can handle both classification and regression
problems and has been proven to be remarkably effective in
traditional numeric data mining and text mining [16].

TN is an enhancement of the CART model using stochastic
gradient boosting [16]. Boosting means that endeavours to
“boost” the accuracy of any given learning algorithm by fitting a
series of models each having a low error rate and then
combining into an ensemble that may perform better [18, 17].
The key features of TN models consist of [18]: automatic
variable subset selection; ability to handle data without pre-
processing; resistance to outliers; automatic handling of missing
values; robustness to dirty and partially inaccurate data; high
speed; and resistance to over-training. A TN model can be
thought of as a series expansion approximating the true
functional relationship [19] (1):

 F (X) = F0+ β1 T1(X)+ β2 T2(X)+…+ βM TM(X) (1)

where Ti is a small tree. Each tree refines and improves on its
predecessors. TN models are thus typically composed of
hundreds of small trees, each of which contributes slight
refinement to the overall model.

IV. EXPERIMENTAL SETUP
In this experiment, two different log records were utilised.

The first data from BU Web Trace (client-side) [20] collected by
Oceans Research Group at BU functioned as the experiment data

set. BU traces records collected 9,633 files, instead of a
population of 762 different users, and recording 109,759
requests for data transfer. The browser log data (from November
1994 to May 1995) were obtained from Mosaic clients at the BU
[21][22][23].

The second data was from EL (Web server) from Universiti
Teknologi Malaysia (UTM). The server log data that was
obtained on 13 and 14 January 2008 with 65,015 records were
from one of EL Apache servers at Centre of Information and
Communication Technology (CICT) [24].

A. Pre-processing and Normalise Data
The pre-processing is the key component to classify an object

to cache. Fig. 2 shows the actual data prior to data pre-processing,
and Fig. 3 depicts the pre-process data for BU, and EL logs data.
Each line of a condensed log in BU Web traces corresponds to a
single URL requested by the user; it contains the machine name,
the time stamp when the request was made (seconds and
microseconds), the URL, the size of the document (in bytes) and
the object retrieval time in seconds. Detail explanation can be
referred to [20][21][24].

Figure 2. Examples data from BU and EL log data: (a) BU (b) EL.

Fig. 5. Preprocess BU and EL log data (a) BU (b) EL.

Figure 3. Pre-process BU and EL log data: (a) BU (b) EL.

Meanwhile, each line in EL file represents an incoming
HTTP request, and Apache records information about it using a
format known as the Common Log Format (CLF). Reading from
left to right, this format contains the following information about
the request; the source IP address, the client’s identity the remote
user name (if using HTTP authentication), the date, time, and
time zone of the request, the actual content of the request, the
server’s response code to the request, and the size of the data
block returned to the client, in bytes.

(a)

(b)

(a)

(b)

Three common variables or attributes have been identified in
Web performance analysis [25][26]. The attributes used in this
study are:

Web Object Size: the size is expressed in bytes and kilobytes.
Numbers of Hits: the number of hits per data. Each completed
request for a Web file will increase the number of hit for
requested file.
Retrieval Time: the counter that observes the time takes to
receive a data in seconds.

Each variable or attribute must be multiplied with defined
Priority Value (PV) [27] to get the total of the attributes for
target output generation of the network. Equation (2) explains an
example of PV calculation:
Expected target = (Size *0.266667) + (Num_of_hits*0.200000) +
 (Retrieval_time *0.066667) (2)

The total value determines the expected target for current

data. The total value is compared to a threshold number, and this
threshold values are dynamic. A new threshold calculation is
proposed based on the latency ratio on singular hit rate data [28].

The threshold is calculated and updated for every epoch of
the training (3). If the expected_target is smaller than the
threshold, then the expected target would be 0, or else it
becomes 1 if the expected_target is equal or greater than to the
threshold [21][24] shown below:

 (3)

The network incorporates simplicity in generating output for

the Web caching to cache or not to cache. For each output
generated from the non-training mode, the outputs can be
illustrated by employing sigmoid function that bounded between
0 and 1. For each output values that represents between the
interval of [0.5,1], the data will be cached in the caching storage,
and for each output that represents values less than 0.5 the data
will be fetched directly from the originating database resource in
case the data is not found in the cache storage [21][24].

Normalisation process (see Fig. 4) is done by determining the
maximum and minimum value for each attribute [21][24]. The
end values are between 0 and 1 to improve training
characteristics. Min-max normalisation is given as in (4):

 (4)

Let X refers to an original attribute value and X* refers to the
normalised attribute value. From this formula, we can summarise
the results as shown in Table 1. The summarisation shows the
normalisation process had reduced the number of data up to
15.69% and 42.31% for BU and EL data set respectively at a
proxy cache.

(a)

(b)

Figure 4. Normalise BU and EL log data: (a) BU (b) EL.

TABLE I. SUMMARISATION OF BU AND EL LOG DATA AFTER THE
NORMALISATION

Summary BU EL
Number of actual data 109 759 65 015
Number of pre-process data 17 224 23 105
Maximum size (byte) 16 711 260 16 384 015
Longest retrieval time (seconds) 1 749 0
Highest hits 3 328 1 141

B. Training and testing
The actual BU log data consists of 109,759 records and EL

log data involves of 65,015 records. Moreover, 70% of it was
used for training and the remaining for testing purposes. These
experiments were carried out on a Core Duo CPU, 2GHz
Machine and the codes were executed using Salford System
tools.

The details of model statistics for CART, MARS, RF and TN
by using the BU and EL data are shown below:

CART:
Number of predictors = 3, 2
Important = 3, 2
Nodes = 38, 5
Min node cases = 2, 312
MARS:
Number of predictors = 3, 2
Basis functions = 3, 1
Number of effective parameters = 7, 1
Min observation between knots = 0, 0
RF:
Number of predictors = 3, 2
Max terminal nodes = 8613, 8088
Trees grown = 500, 500
Parent node min cases = 2, 2
TN:
Number of predictors = 3, 2
Tree size = 6, 6
Tree grown = 200, 200
Last tree data fraction = 0.03, 0.44

⎧⎪
⎨
⎪⎩

<= ≥
0 if expected_target , 1 if expected_target .

thresholdExpected Network Output threshold

- min()*
max() - min()

X XX
X X

=

V. PERFORMANCE AND RESULTS ACHIEVED
Table 2 summarises the comparative performances of the

different CART, MARS, RF and TN in terms of error rate
training, learning iteration and classification accuracy.

From the training, we find that the error rate training for TN
model has resulted as the lowest rate with 0.001 for BU data.
Simultaneously, CART and TN model is given 0 error rate for
EL data. However, the highest error rate is 0.242 by using
MARS model for EL data. The smallest number of training
iteration is CART, 38 and 5 for BU and EL data.

TABLE II. PERFORMANCE COMPARISON BETWEEN CART, MARS, RF AND
TN FOR BU AND EL LOG DATA

Technique
Error Rate
(Training)

Learning
Iteration/

Nodes Optimal
Accuracy (%)

BU EL BU EL BU EL
CART 0.002 0.000 38 5 99.86 100
MARS 0.081 0.242 - - 91.07 59.04

RF 0.007 0.003 500 500 99.50 99.45
TN 0.001 0.000 200 200 99.80 100

Testing process is done to determine the accuracy of the
output generated by all Salford Systems tools. The accuracy is
done base on the difference in results between the actual value
and the generated value by CART, MARS, RF and TN. In this
study, the accuracy is measured as shown in (5):

 (5)

Based on this equation, the CART accuracy is 99.86% and
100% for BU and EL data as the best accuracy compare to other
models. The second highest is TN, 99.8% (BU) and 100% (EL).
It depicts that the CART model seems to classify better and less
iteration than others.

Table 3 depicts the receiver operating characteristic (ROC) as
a graphical plot of the sensitivity vs. (1 - specificity) for a binary
classifier system as its discrimination threshold is varies. The
ROC analysis recently has been introduced in various fields like
medicine, radiology and others. Conversely, it has been
introduced recently in other areas for instance data mining and
machine learning. ROC approved that CART model is the best
classifier measure up to other Salford Systems model.

TABLE III. ROC COMPARISON BETWEEN CART, MARS, RF AND TN FOR
BU AND EL LOG DATA

Technique
ROC

BU EL
Class1(0) Class2(1) Class1(0) Class2(1)

CART 1.000 1.000 1.000 1.000
MARS 0.000 1.000 0.000 1.000

RF 0.989 0.996 0.999 0.995
TN 0.989 1.000 1.000 1.000

In addition, Table 4 shows the important level of three
variables. However, EL log data only provided size and number
of hits variable. The most significant variable is the size, followed
by the number of hits and retrieval time for each BU and EL log
data. It proves that size will construct an effective use of space
for Web caching in the cache server.

TABLE IV. VARIABLE IMPORTANCE

VI. DISCUSSION
In this research, an accomplishment of different machine

learning approaches for Web caching technology promises
alleviation of congestion of Internet access mainly for BU and
EL. Therefore, this study proves that the classification of Web
object through log mining by using CART, MARS, RF and TN.

In the literature, various methodology approaches to manage
proxy cache have been proposed [2-10]. However, we applied
statistical model to decide and classify the object on Web
documents either to cache or not cache.

It is clear from the results presented here that CART and TN
have a distinct advantage over MARS and RF in classifying the
cache objects. This scenario happened related to the strengths
and weaknesses of the models themselves. Subsequently, the
data set to be modelled also can be considered as a suitability
factor of the models.

Based on the experimental results in this study, some
remarks can be discussed as follows:

• Intelligent Web caching is able to store ideal objects
and remove unwanted objects, which may cause
insufficiency cache. Thus, the caching insufficiency can
be improved.

• Both CART and TN achieve correct classification
accuracy in the range of 99.8% and 100% for testing
data of BU and EL log data, and in the range of 0 and
0.002 for training error rate data for both data compared
to MARS and RF respectively.

• ROC for CART is the highest sensitivity and specificity
for testing. Consequently, CART is identified as the
best classifier that is closest to the convex hull.

• In all conditions, MARS was the worst model to apply
in classifying all log data because of MARS is highly
sensitive to extrapolation caused by the local nature of
the basis functions. A change in the predictor value
toward the end of its range can cause the prediction to
go largely off scale.

Variable
Score

BU EL
CART MARS RF TN CART MARS RF TN

Size
 100 94.17 100 100 100 - 100 100

Num_of
_hits 87.50 100 56.85 59.75 26.14 - 25.82 50.20

Retrieval
_time 41.19 49.27 13.57 34.51 - - - -

Number of correct data 100%
Total data

Accuracy = ×

• Size as the most important variable is recognized to
ensure that intelligent Web caching can be affected the
performance of cache server.

VII. CONCLUSIONS AND FUTURE WORK
In this research, an accomplishment of different machine

learning approaches for Web caching technology promises
alleviation of congestion of Internet access mainly for BU and
EL. Therefore, this study proves that the classification of Web
object through log mining by using CART, MARS, RF and TN
models can be applied in cache server. Hence, this situation will
affect the size of data in the cache server and time to retrieve the
data from the cache server. In the future, we will evaluate and
compare the performance analysis of machine learning
approaches with other hybrid soft computing techniques for Web
caching technology for BU and EL data.

ACKNOWLEDGMENT
This work is funded by Ministry of Higher Education

(MOHE) under FRGS, vote 4F026 and supported by Research
Management Centre (RMC), Universiti Teknologi Malaysia
(UTM), MALAYSIA. The authors would like to express their
deepest gratitude to the Boston University, Centre of Information
and Communication Technology and Centre of Teaching and
Learning, UTM especially to Mr. Azmi Kamis and Dr.
Jamalludin Harun, Jo Ann Kelly from Salford Systems for her
collaboration in making this research a successful one and Soft
Computing Research Group (SCRG), K-Economy, UTM for their
encouragement.

REFERENCES
[1] M. Nottingham, “Caching tutorial for web authors and and webmasters,”

June 2010, available from http://www.mnot.net/cache_docs/.
[2] V. N. Padmanabhan, and J. C. Mogul, “Using predictive prefetching to

improve World Wide Web latency,” SIGCOMM Comput. Commun. Rev.
26, 3 (July 1996), pp. 22-36.

[3] A. Bestavros, and C. Cunha, “A prefetching protocol using client
speculation for the WWW,” Technical Report. Boston University, Boston,
MA, USA, 1995.

[4] G. Pallis, A.Vakali, and J. Pokorny, “A clustering-based prefetching
scheme on a Web cache environment,” Comput. Electr. Eng. 34, 4 (July
2008), pp. 309-323.

[5] T. M. Kroeger, D. E. Long, and J. C. Mogul, “Exploring the bounds of web
latency reduction from caching and prefetching,” In Proceedings of the
USENIX Symposium on Internet Technologies and Systems on USENIX
Symposium on Internet Technologies and Systems (USITS'97). USENIX
Association, Berkeley, CA, USA, 1997, 2-2.

[6] J. Xu, J. Liu, B. Li, and X. Jia, “Caching and prefetching for Web content
distribution,” Computing in Science and Eng. 6, 4 (July 2004), pp. 54-59.

[7] A. S. Nair, and J. S. Jayasudha, “Dynamic Web pre-fetching technique for
latency reduction,” In Proceedings of the International Conference on
Computational Intelligence and Multimedia Applications (ICCIMA 2007) -
Volume 04 (ICCIMA '07), Vol. 4. IEEE Computer Society, Washington,
DC, USA, 2007, pp. 202-206.

[8] S.-H. Hung, C.-C.Wu, and C.-H. Tu., “Optimizing the embedded caching
and prefetching software on a network-attached storage system,” In

Proceedings of the 2008 IEEE/IFIP International Conference on Embedded
and Ubiquitous Computing - Volume 01 (EUC '08), Vol. 1. IEEE
Computer Society, Washington, DC, USA, 2008, pp. 152-161.

[9] W.-G. Teng, C.-Y. Chang, and M.-S. Chen, “Integrating web caching and
web prefetching in client-side proxies,” IEEE Trans. Parallel Distrib. Syst.
16, 5 (May 2005), 2005, pp. 444-455.

[10] J. H. Lee and W.-K. Shiu, “An adaptive website system to improve
efficiency with web mining techniques,” Advanced Engineering
Informatics, 18 (2004), pp. 129-142.

[11] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and
regression trees,”Chapman & Hall/CRC Press, Boca Raton, FL, 1984.

[12] S. Gey, and E. Nédélec, “Model selection for CART regression trees,”
IEEE Trans. Inf. Theory 51, 2005, pp. 658–670.

[13] J. H. Friedman, “Multivariate adaptive regression splines (with
discussion)”. Annals of Statistics, 19, 1991, pp. 1–141.

[14] A. Abraham, and D. Steinberg, “MARS: Still an alien planet in soft
computing?,” In: International Conference on Computational Science
(Proceedings), Part II, vol. 2, Springer, San Francisco, California, USA,
2001, pp. 235-244.

[15] L. Breiman, “Random Forests,” Kluwer Academic Publishers, Machine
Learning, 45, 2001, pp. 5–32.

[16] J.H. Friedman,"Stochastic gradient boosting", Computational Statistics &
Data Analysis, vol. 38, 2002, pp. 367-378.

[17] R. Schapire, "A brief introduction to boosting," Proc. 16th International
Joint Conference on Artificial Intelligence, 1999, pp. 1401-1405.

[18] J. Friedman and J. Meulman, "Multiple additive regression trees with
application in epidemiology," Statistics in Medicine, vol. 22, 2003, pp.
1365-1381.

[19] M.O. Elish, K.O. Elish, “Application of TreeNet in predicting object-
oriented software maintainability: a comparative study,” Software
Maintenance and Reengineering, 2009. CSMR '09. 13th European
Conference, 2009, pp. 69-78.

[20] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW client-
based traces,” Technical Report. UMI Order Number: 1995-010., Boston
University, 1995.

[21] S. Sulaiman, S.M. Shamsuddin, F. Forkan, and A. Abraham, “Intelligent
Web caching using neurocomputing and particle swarm optimization
algorithm,” Second Asia International Conference on Modeling and
Simulation, AMS 2008, IEEE Computer Society Press, USA, 2008, pp.
642-647.

[22] S. Sulaiman, S.M. Shamsuddin, and A. Abraham, “Rough Web caching,”
Rough Set Theory: A True Landmark in Data Analysis, Studies in
Computational Intelligence, Springer Verlag, Germany, 2009, pp. 187-211.

[23] S. Sulaiman, S.M. Shamsuddin, and A. Abraham,“An implementation of
rough set in optimizing mobile Web caching performance,” Tenth
International Conference on Computer Modeling and Simulation,
UKSiM/EUROSiM 2008, Cambridge, UK, IEEE Computer Society Press,
USA, 2008, pp. 655-660.

[24] S. Sulaiman, S.M. Shamsuddin, F. Forkan, and A. Abraham, S. Sulaiman,
“Intelligent Web caching for e-learning log data,” Third Asia International
Conference on Modelling and Simulation, AMS 2009, IEEE Computer
Society Press, USA, 2009, pp. 136-141.

[25] A. Rousskov, and V. Soloviev, “On performance of caching proxies,”
(extended abstract). SIGMETRICS Perform. Eval. Rev. 26, 1 (June 1998),
pp. 272-273.

[26] M. Liu, F. Y. Wang, D. Zeng, and L. Yang, “An overview of World Wide
Web caching,” IEEE International Conference on. Systems, Man, and
Cybernatics, Volume 5, 2001, pp.3045-3050.

[27] F. Mohamed, “Intelligent Web caching architecture,” Master thesis,
Faculty of Computer Science and Information System, Universiti
Teknologi Malaysia, 2007.

[28] Koskela, T., “Neural network method in analysing and modelling time
varying processes,” PhD dissertation, Helsinki University of Technology,
2004.

