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Abstract. This paper suggests a decision support system for tactical air combat environment using a combination of unsuper-

vised learning for clustering the data and three well known genetic programming techniques to classify the different decision re-

gions accurately.  The genetic programming techniques used are: Linear Genetic programming (LGP), Multi Expression Pro-

gramming (MEP) and Gene Expression Programming (GEP). The clustered data is used as the inputs to the genetic program-

ming algorithms. Some simulation results demonstrating the difference of these techniques and are also performed. Experiment 

results reveal that the proposed method is efficient.   

1.    Introduction 

Several decision support systems have been developed mostly in various fields including medical diagnosis, 

business management, control system, command and control of defense, air traffic control and so on [9][1] [1]. 

Usually previous experience or expert knowledge is often used to design decision support systems. Several adap-

tive learning frameworks for constructing intelligent decision support systems have been proposed 

[1][2][3][4][1]. To develop an intelligent decision support system, we need a holistic view on the various tasks 

to be carried out including data management and knowledge management (reasoning techniques) [1][1]. The 

focus of this paper is to develop a Tactical Air Combat Decision Support System (TACDSS) with minimal prior 

knowledge, which could also provide optimal decision scores. As shown in Figure 1, we propose a concurrent 

unsupervised neural network to cluster the decision regions and genetic programming techniques to automati-

cally generate the decision scores. Section 2 presents the problem of decision making in tactical air combat sys-

tem. In Section 3, we introduce some theoretical concepts of Self Organizing Map (SOM) followed by the ge-

netic programming techniques namely Linear Genetic programming (LGP), Multi Expression Programming (MEP) and 

Gene Expression programming [1]. Experimentation results are provided in Section 4 and some conclusions are 

also provided towards the end. 
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Figure 1. Concurrent unsupervised and genetic programming models for decision support systems 

2.    The Tactical Air Combat Environment 

Figure 2 presents a typical scenario of air combat tactical environment. The Airborne Early Warning and Control 

(AEWC) is performing surveillance in a particular area of operation. It has two hornets (F/A-18s) under its con-

trol at the ground base as shown "+" in the left corner of Figure 2. An air-to-air fuel tanker (KB707) "ٱ" is on the 

station and the location and status are known to the AEWC. Two of the hornets are on patrol in the area of Com-

bat Air Patrol (CAP). Sometime later, the AEWC on-board sensors detects 4 hostile aircrafts (Mig-29) shown as 

"O". When the hostile aircrafts enter the surveillance region (shown as dashed circle) the mission system soft-

ware is able to identify the enemy aircraft and its distance from the Hornets in the ground base or in the CAP. 

The mission operator has few options to make a decision on the allocation of hornets to intercept the enemy 

aircraft. 

• Send the hornet directly to the spotted area and intercept, 

• Call the hornet in the area back to ground base and send another Hornet from the ground base 



• Call the hornet in the area to refuel before intercepting the enemy aircraft 

The mission operator will base his decisions on a number of decision factors, such as: 

• Fuel used and weapon status of hornet in the area 

• Interrupt time of Hornet in the ground base and the Hornet at the CAP to stop the hostile 

• The speed of the enemy fighter aircraft and the type of weapons it posses 

• The information of enemy aircraft with type of aircraft, weapon, number of aircraft 
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Figure 2. A simple scenario of the air combat 

From the above simple scenario, it is evident that there are several important decision factors of the tactical envi-

ronment that might directly affect the air combat decision. In the simple tactical air combat, the four decision 

factors that could affect the decision options for calling the Hornet in the CAP or the Hornet at the ground base 

are the following: 

• ‘fuel status’ - quantity of fuel available to perform the intercept,  

• ‘weapon possession status’ – quantity of weapons available in the Hornet, 

• ‘interrupt time’ - time required by the hornet to interrupt the hostile and 

• ‘danger situation’  - information of the Hornet and the hostile in the battlefield.  

Each factors has difference range of unit such as the fuel status (0 to 1000 litres), interrupt time (0 to 60 min-

utes), weapon status (0 to 100 %) and danger situation (0 to 10 points). We used the following two expert rules 

for developing the fuzzy inference system. 

• The decision selection will have small value if the fuel status is low, the interrupt time is slow, the hornet 

has low weapon status, and the danger situation is high.  

• The decision selection will have high value if the fuel status is full, the interrupt time is fast, the hornet has 

high weapon status and the danger situation is low. 

Table 1. Decision factors for the tactical air combat 

 

Fuel 

used 

Time Intercept  Weapon Status Danger Situation Decision 

Full Fast Sufficient Very Dangerous Good 

Half Normal Enough Dangerous Acceptable 

Low Slow Insufficient Endanger Bad 

 

In a tactical air combat environment, decision-making is always based on all states of decision factors. But some-

times, a mission operator or commander could make a decision based on an important factor, such as the fuel 

used is too low, the enemy has more powerful weapons, quality and quantity of enemy aircraft and so on. Table 

1 shows some typical scores (decision selection point) taking into account of the various tactical air combat 

decision factors. 



3.    Learning Decision Regions Using Hybrid Un-Supervised and supervised Learning Paradigms 

1.0.    Self-Organizing Feature Maps 

The Kohonen's projection algorithm is the fundamental ideas of unsupervised, competitive learning, self-

organization, and global ordering [8]. An input from the original high-dimensional space causes dominant re-

sponse of one neuron in the 2D array of neurons, and only this "winning" neuron together with its neighboring 

neurons get to adjust their weights. For example, adjusting weights of neurons in a local neighborhood around 

the winning neuron leads to global ordering through continuous learning. This operation of the SOM algorithm 

shows the ability of biological neurons that perform global ordering based on local interactions. This global 

order leads to the creation of natural structures and biologically motivated configurations and shapes, which are 

created according to laws of minimum energy, time, or complexity. 

 

2.0.    Genetic Programming 

Once the clusters are defined using SOM, the next step is to apply the Genetic Programming (GP) models to 

learn the different decision regions for the given input data.  Linear Genetic Programming (LGP), Multi Expres-

sion Programming (MEP) and Gene Expression Programming (MEP) are the three well known genetic pro-

gramming techniques explored in this paper. 

 

1.2.0.    Linear Genetic Programming (LGP) 

 

Linear genetic programming is a variant of the GP technique that acts on linear genomes [15]. Its main character-

istics in comparison to tree-based GP lies in that the evolvable units are not the expressions of a functional pro-

gramming language (like LISP), but the programs of an imperative language (like c/c ++). An alternate approach 

is to evolve a computer program at the machine code level, using lower level representations for the individuals. 

This can tremendously hasten the evolution process as, no matter how an individual is initially represented, fi-

nally it always has to be represented as a piece of machine code, as fitness evaluation requires physical execution 

of the individuals. The basic unit of evolution here is a native machine code instruction that runs on the floating-

point processor unit (FPU). Since different instructions may have different sizes, here instructions are clubbed up 

together to form instruction blocks of 32 bits each. The instruction blocks hold one or more native machine code 

instructions, depending on the sizes of the instructions. A crossover point can occur only between instructions 

and is prohibited from occurring within an instruction. However the mutation operation does not have any such 

restriction. LGP uses a specific linear representation of computer programs. Instead of the tree-based GP expres-

sions of a functional programming language (like LISP) programs of an imperative language (like C) are 

evolved. A LGP individual is represented by a variable-length sequence of simple C language instructions. In-

structions operate on one or two indexed variables (registers) r, or on constants c from predefined sets. 

The result is assigned to a destination register, for example, ri = rj* c. 

Here is an example LGP program: 

 

void LGP(double v[8]) 

[0] = v[5] + 73; 

v[7] = v[3] – 59; 

if (v[1] > 0) 

if (v[5] > 21) 

v[4] = v[2] . v[1]; 

v[2] = v[5] + v[4]; 

v[6] = v[7] . 25; 

v[6] = v[4] – 4; 

v[1] = sin(v[6]); 

if (v[0] > v[1]) 

v[3] = v[5] . v[5]; 

v[7] = v[6] . 2; 

v[5] = v[7] + 115; 

if (v[1] <= v[6]) 

v[1] = sin(v[7]); 

} 



 

A LGP can be turned into a functional representation by successive replacements of variables starting with the 

last effective instruction. The maximum number of symbols in a LGP chromosome is 4 * Number of instructions. 

Evolving programs in a low-level language allows us to run those programs directly on the computer processor, 

thus avoiding the need of an interpreter. In this way the computer program can be evolved very quickly. An 

important LGP parameter is the number of registers used by a chromosome. The number of registers is usually 

equal to the number of attributes of the problem. If the problem has only one attribute, it is impossible to obtain 

a complex expression such as the quartic polynomial. In that case we have to use several supplementary regis-

ters. The number of supplementary registers depends on the complexity of the expression being discovered. An 

inappropriate choice can have disastrous effects on the program being evolved. LGP uses a modified steady-state 

algorithm. The initial population is randomly generated. The following steps are repeated until a termination 

criterion is reached: Four individuals are randomly selected from the current population. The best two of them 

are considered the winners of the tournament and will act as parents. The parents are recombined and the off-

spring are mutated and then replace the losers of the tournament. We used a LGP technique that manipulates and 

evolves a program at the machine code level. The settings of various linear genetic programming system parame-

ters are of utmost importance for successful performance of the system. The population space has been subdi-

vided into multiple subpopulation or demes. Migration of individuals among the subpopulations causes evolution 

of the entire population. It helps to maintain diversity in the population, as migration is restricted among the 

demes. Moreover, the tendency towards a bad local minimum in one deme can be countered by other demes with 

better search directions. The various LGP search parameters are the mutation frequency, crossover frequency 

and the reproduction frequency: The crossover operator acts by exchanging sequences of instructions between 

two tournament winners. Steady state genetic programming approach was used to manage the memory more 

effectively. 

 

2.2.0.    Multi Expression Programming (MEP) 

MEP genes are (represented by) substrings of a variable length [14]. The number of genes per chromosome is 

constant. This number defines the length of the chromosome. Each gene encodes a terminal or a function sym-

bol. A gene that encodes a function includes pointers towards the function arguments. Function arguments al-

ways have indices of lower values than the position of the function itself in the chromosome. The proposed rep-

resentation ensures that no cycle arises while the chromosome is decoded (phenotypically transcripted). Accord-

ing to the proposed representation scheme, the first symbol of the chromosome must be a terminal symbol. In 

this way, only syntactically correct programs (MEP individuals) are obtained. An example of chromosome using 

the sets F= {+, *} and T= {a, b, c, d} is given below: 

1: a 

2: b 

3: + 1, 2 

4: c 

5: d 

6: + 4, 5 

7: * 3, 6 

The maximum number of symbols in MEP chromosome is given by the formula: 

Number_of_Symbols = (n + 1) * (Number_of_Genes – 1) + 1, 

where n is the number of arguments of the function with the greatest number of arguments. The maximum num-

ber of effective symbols is achieved when each gene (excepting the first one) encodes a function symbol with the 

highest number of arguments. The minimum number of effective symbols is equal to the number of genes and it 

is achieved when all genes encode terminal symbols only. 

The translation of a MEP chromosome into a computer program represents the phenotypic transcription of the 

MEP chromosomes. Phenotypic translation is obtained by parsing the chromosome top-down. A terminal symbol 

specifies a simple expression. A function symbol specifies a complex expression obtained by connecting the 

operands specified by the argument positions with the current function symbol. 

For instance, genes 1, 2, 4 and 5 in the previous example encode simple expressions formed by a single terminal 

symbol. These expressions are: 

E1 = a, 

E2 = b, 

E4 = c, 

E5 = d, 



Gene 3 indicates the operation + on the operands located at positions 1 and 2 of the chromosome. Therefore 

gene 3 encodes the expression: E3 = a + b. Gene 6 indicates the operation + on the operands located at positions 

4 and 5. Therefore gene 6 encodes the expression: E6 = c + d. Gene 7 indicates the operation * on the operands 

located at position 3 and 6. Therefore gene 7 encodes the expression: E7 = (a + b) * (c + d). E7 is the expression 

encoded by the whole chromosome. 

There is neither practical nor theoretical evidence that one of these expressions is better than the others. This is 

why each MEP chromosome is allowed to encode a number of expressions equal to the chromosome length 

(number of genes). The chromosome described above encodes the following expressions: 

E1 = a, 

E2 = b, 

E3 = a + b, 

E4 = c, 

E5 = d, 

E6 = c + d, 

E7 = (a + b) * (c + d). 

The value of these expressions may be computed by reading the chromosome top down. Partial results are com-

puted by dynamic programming and are stored in a conventional manner. 

Due to its multi expression representation, each MEP chromosome may be viewed as a forest of trees rather than 

as a single tree, which is the case of Genetic Programming. 

 

Fitness assignment 

 

As MEP chromosome encodes more than one problem solution, it is interesting to see how the fitness is as-

signed. The chromosome fitness is usually defined as the fitness of the best expression encoded by that chromo-

some. For instance, if we want to solve symbolic regression problems, the fitness of each sub-expression Ei may 

be computed using the formula:  
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where ok,i is the result obtained by the expression Ei for the fitness case k and wk is the targeted result for the 

fitness case k. In this case the fitness needs to be minimized. The fitness of an individual is set to be equal to the 

lowest fitness of the expressions encoded in the chromosome: 

When we have to deal with other problems, we compute the fitness of each sub-expression encoded in the MEP 

chromosome. Thus, the fitness of the entire individual is supplied by the fitness of the best expression encoded in 

that chromosome. 

 

 MEP strengths 

 

A GP chromosome generally encodes a single expression (computer program). By contrast, a MEP chromosome 

encodes several expressions. The best of the encoded solution is chosen to represent the chromosome (by sup-

plying the fitness of the individual). The MEP chromosome has some advantages over the single-expression 

chromosome especially when the complexity of the target expression is not known. This feature also acts as a 

provider of variable-length expressions. Other techniques (such as Gramatical Evolution (GE) [15] or Linear 

Genetic Programming (LGP) [5]) employ special genetic operators (which insert or remove chromosome parts) 

to achieve such a complex functionality. 

 

3.2.0.    Gene Expression Programming (GEP) 

 

The individuals of gene expression programming [1] are encoded in linear chromosomes which are expressed or 

translated into expression trees (branched entities). Thus, in GEP, the genotype (the linear chromosomes) and the 

phenotype (the expression trees) are different entities (both structurally and functionally) that, nevertheless, work 

together forming an indivisible whole. In contrast to its analogous cellular gene expression, GEP is rather sim-

ple. The main players in GEP are only two: the chromosomes and the Expression Trees (ETs), being the latter 

the expression of the genetic information encoded in the chromosomes. As in nature, the process of information 

decoding is called translation. And this translation implies obviously a kind of code and a set of rules. The ge-

netic code is very simple: a one-to-one relationship between the symbols of the chromosome and the functions or 

terminals they represent. The rules are also very simple: they determine the spatial organization of the functions 

and terminals in the ETs and the type of interaction between sub-ETs. GEP uses linear chromosomes that store 



expressions in breadth-first form. A GEP gene is a string of terminal and function symbols. GEP genes are com-

posed of a head and a tail. The head contains both function and terminal symbols. The tail may contain terminal 

symbols only. For each problem the head length (denoted h) is chosen by the user. The tail length (denoted by t) 

is evaluated by: 

t = (n - 1)h + 1, 

where n is the number of arguments of the function with more arguments. 

Let us consider a gene made up of symbols in the set S: 

S = {., /,+,-, a, b}. 

In this case n = 2. If we choose h = 10, then we get t = 11, and the length of the gene is 10 + 11 = 21. Such a 

gene is given below: 

 

CGEP = +* ab - +aab + ababbbababb. 

 

The expression encoded by the gene CGEP is: 

 

E = a + b . ((a + b) - a). 

 

GEP genes may be linked by a function symbol in order to obtain a fully functional chromosome. In the current 

version of GEP the linking functions for algebraic expressions are addition and multiplication. A single type of 

function is used for linking multiple genes. Genetic operators are the core of all genetic algorithms, and two of 

them are common to all evolutionary systems: selection and replication. Although the center of the storm, these 

operators, by themselves, do nothing in terms of evolution. In fact, they can only cause genetic drift, making 

populations less and less diverse with time until all the individuals are exactly the. So, the cornerstone of all 

evolutionary systems is modification, or more specifically, the genetic operators that cause variation. And differ-

ent algorithms create this modification differently. GEP uses mutation, recombination and transposition. GEP 

uses a generational algorithm. The initial population is randomly generated. The following steps are repeated 

until a termination criterion is reached: A fixed number of the best individuals enter the next generation (elitism). 

The mating pool is filled by using binary tournament selection. The individuals from the mating pool are ran-

domly paired and recombined. Two offspring are obtained by recombining two parents. The offspring are mu-

tated and they enter the next generation. There are some problems regarding multigenic chromosomes. Gener-

ally, it is not a good idea to assume that the genes may be linked either by addition or by multiplication. Provid-

ing a particular linking operator means providing partial information to the expression which is discovered. But, 

if all the operators {+,-, ., /} are used as linking operators, then the complexity of the problem substantially grows 

(since the problem of determining how to mix these operators with the genes is as difficult as the initial prob-

lem). Furthermore, the number of genes in the GEP multigenic chromosome raises a problem. As can be seen in 

[6], the success rate of GEP increases with the number of genes in the chromosome. But, after a certain value, 

the success rate decreases if the number of genes in the chromosome is increased. This happens because we 

cannot force a complex chromosome to encode a less complex expression. A large part of the chromosome is 

unused if the target expression is short and the head length is large. Note that this problem arises usually in sys-

tems that employ chromosomes with a fixed length.  

4.     Experiment Results and Performance Analysis 

Our master data set comprises of 1000 numbers. To avoid any bias on the data, from the master dataset, we ran-

domly created two sets of training (Dataset A - 90% and Dataset B- 80%) and test data (10% and 20%). In addi-

tion to the four input variables (fuel used, time intercept  weapon status and danger situation) as illustrated 

in Table 1, we also used the cluster information generated using SOM algorithm to train the GP models. All the 

experiments were repeated three times and the average errors are reported. 

1.0.    Unsupervised Training of SOM 

The SOM algorithm provides three clusters: C1, C2 and C3. The developed clusters for the two data sets A and B 

are shown in Figures 3 (a) and (b). 



  

(a) 

 

(b) 

Fig. 3. Developed clusters using SOM 

2.0.    Learning the Decision Regions 

Parameters used by LGP, MEP and GEP are presented in Tables 2, 3 and 4 respectively. Root Mean Squared 

Errors (RMSE) values obtained for first and second data sets using LGP, MEP ad GEP are presented in Table 5. 

 

Parameter Value 

Population size 50 

Mutation frequency 95% 

Crossover frequency 95% 

Number of demes 10 

Initial 80 
Program size 

maximum 1024 

Table 2. Parameters used by LGP. 

Parameter Value 

Population size 50 

Number of mutations per chromosome 3 

Crossover probability 0.8 

Code length 40 

Number of generations 50 

Tournament size 4 



Table 3. Parameters used by MEP. 

 

Parameter Value 

Population size 50 

Mutation probability 0.044 

Crossover probability (one point 

crossover) 

0.3 

Number of genes 3 

Genes recombination 0.1 

Genes transposition 0.1 

Inversion 0.1 

Table 4. Parameters used by GEP. 

RMSE LGP MEP GEP 

First data set 

Test 0.09989 0.07225 0.06693 

Train 0.05912 0.05930 0.06626 

Second data set 

Test 0.056864 0.05927 0.07666 

Train 0.057904 0.05725 0.06540 

 

Table 5. RMSE of decision scores using GP models for the test data set 

 

The functions evolved by MEP (combining these variables and also using some constants) are reported below: 

- for first data set, the derived function is: var3 (where var1, var2, var3 var4 are the variables); 

- for second data set, the derived function is: 0.93786 + var1 - 0.79537 - 0.044892; 

 

Relationship between the number of generations and the value of fitness function (RMSE) for training data ob-

tained by MEP for first data set and second data set are depicted in Figures 4 and 5 respectively. Figures 6 and 7, 

illustrate LGP models showing the evolution of best training and test fitness values and the average and best 

code length for first and second data set respectively during 200,000 tournaments.  

 

 
Figure 4. First data set: relationship between fitness function and generations obtained by MEP. 



 
Figure 5. Second data set: relationship between fitness function and generations obtained by MEP. 
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(b) 

 

Figure 6 (a). First data set: LGP models showing the evolution of best training and test fitness values during 

200,000 tournaments (b) average and best code length  

 



 
(a) 

 

 
(b) 

 

Figure 7 (a). Second dataset: LGP models showing the evolution of best training and test fitness values during 

200,000 tournaments (b) average and best code length  

 

 

5.    Conclusion and future research 

In this paper, we proposed a hybrid unsupervised-supervised training method to develop a decision support sys-

tem for a tactical air combat environment. We also investigated the performance of three different genetic pro-

gramming techniques (Linear Genetic Programming, Multi Expression Programming and Gene Expression Pro-

gramming) to learn the different decision regions. Two data sets were considered in the experiments. Empirical 

results reveal that Gene Expression Programming (GEP) outperforms Linear Genetic Programming (LGP) and 

Multi Expression Programming (MEP) for the first data set and for the second data set LGP obtains the best 

results. MEP performed well for both data sets while GEP (the best algorithms for first data set) is the worst for 

second data set and LGP (the worst for first data set) is the best for second data set. Our future research is tar-

geted to investigate and develop how to initiate optimal cluster centers with and without prior knowledge. 
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