
Designing Intrusion Detection Systems: Architectures,

Challenges and Perspectives

Srinivas Mukkamala, Andrew Sung

and Ajith Abraham

*

Department of Computer Science, New Mexico Tech, USA
*
Department of Computer Science, Oklahoma State University, USA

Abstract:

Computer security is defined as the protection of computing systems against threats to

confidentiality, integrity, and availability. There are two types of intruders: the external

intruders who are unauthorized users of the machines they attack, and internal intruders, who

have permission to access the system with some restrictions. Due to increasing incidents of

cyber attacks, building effective intrusion detection systems are essential for protecting

information systems security, and yet it remains an elusive goal and a great challenge. We

present the state-of-the-art of the evolution of intrusion detection systems and address some of

the research challenges to design efficient and effective intrusion detection systems. Further

distributed intrusion detection systems are presented which could be used to detect and prevent

attacks that would be invisible to any single system or whose significance would be missed if

information from only a single system were available. We finally illustrate how a data mining

approach could reduce abundant/redundant and noisy data and design effective intrusion

detection systems.

1 Introduction

Intrusion detection is a problem of great significance to critical infrastructure protection owing

to the fact that computer networks are at the core of the nation’s operational control. This paper

summarizes the use of different artificial intelligent techniques to build efficient IDSs in terms

of classification accuracy, learning time and testing time. Since the ability of a good detection

technique gives more accurate results, it is critical for intrusion detection in order for the IDS to

achieve maximal performance. Therefore, we study different intelligent computing techniques

for building models based on DARPA intrusion detection data illustrated in Figure 1[1]. This

paper summarizes the performance of Intrusion Detection Systems (IDSs) built using Artificial

Neural Networks or ANNs [2], Support Vector Machines or SVMs [3], Multivariate Adaptive

Regression Splines or MARS [4] and Liner Genetic Programs (LGPs) [5]. Single point or

centralized IDSs may have packet loss on heavy load conditions on Gigabit networks, such a

situation will hinder the performance of an IDS. Distributed computational intelligent agents

distribute the processing effort of detecting intrusions among multiple agents that are

distributed on the network; that help detect intrusions that are missed by the centralized IDS.

Since most of the intrusions can be uncovered by examining patterns of user activities, many

IDSs have been built by utilizing the recognized attack and misuse patterns that can classify a

user’s activity as normal or abnormal (attack). Data mining techniques are used to analyze audit

trails and extract knowledge (features) that help in distinguishing intrusive patterns form

normal patterns. Feature rankings algorithms help in deciding which features are important for

classifying intrusions and which ones are redundant or noisy. Several intelligent techniques

including but not limited to ANNs, SVMs, Petri nets, and data mining techniques are being

used to build intrusion detection systems. In this paper, we will concentrate on using SVMs,

MARS, LGPs and ANNs with different training functions to achieve better classification

accuracies. The data we used in our experiments originated from Lincoln Lab. It was developed

for intrusion detection system evaluations by DARPA and is considered a benchmark for

intrusion detection evaluations [1].

In the rest of the paper, a brief introduction to related work in the field of intrusion detection is

given in section 2. A brief introduction to computer attack taxonomy and the data we used is

given in section 3. In section 4 we describe the theoretical aspects of data mining,

computational intelligence, ANNs, SVMs, and MARS and LGPs. Implementation of

distributed computational intelligent agents for intrusion detection is also described in section

4. In section 5 we present the experimental results of ANNs, SVMs, MARS and distributed

computational intelligent agents to detect probes. In section 6 we describe the importance of

feature ranking for IDS and summarize the results obtained using the important features for

classifying intrusions. In section 7, we summarize our experience of using artificial intelligent

techniques to build IDSs.

2 Intrusion Detection Systems and Related Research

Identifying unauthorized use, misuse and attacks on information systems is defined as intrusion

detection [6,7]. The most popular way to detect intrusions has been done by using audit data

generated by operating systems and by networks. Since almost all activities are logged on a

system, it is possible that a manual inspection of these logs would allow intrusions to be

detected. It is important to analyze the audit data even after an attack has occurred, for

determining the extent of damage occurred, this analysis helps in attack trace back and also

helps in recording the attack patterns for future prevention of such attacks. An intrusion

detection system can be used to analyze audit data for such insights. This makes intrusion

detection system a valuable real-time detection and prevention tool as well as a forensic

analysis tool.

Soft computing techniques are being widely used by the IDS community due to their

generalization capabilities that help in detecting know intrusions and unknown intrusions or the

attacks that have no previously described patterns. Earlier studies have utilized a rule based

approach for intrusion detection, but had a difficulty in identifying new attacks or attacks that

had no previously describe patterns [8-11]. Lately the emphasis is being shifted to learning by

examples and data mining paradigms. Neural networks have been extensively used to identify

both misuse and anomalous patterns [12-14]. Recently support vector machines and their

variants are being proposed to detect intrusions [14]. Several researchers proposed data mining

techniques to identify key patterns that help in detecting intrusions [15-17]. Distributed agent

technology is being proposed by a few researchers to overcome the inherent limitations of the

client-server paradigm and to detect intrusions in real time [18-21].

2.1 Misuse Detection

The idea of misuse detection is to represent attacks in the form of a pattern or a signature so

that the same attack can be detected and prevented in future. These systems can detect many or

all known attack patterns [22], but they are of little use for detecting naive attack methods. The

main issues of misuse detection is how to build signatures that include possible signatures of

attacks build a signature that includes all possible variations of the pertinent attack to avoid

false negatives, and how to build signatures that do not match non-intrusive activities to avoid

false positives.

2.2 Anomaly Detection

The idea here is that if we can establish a normal activity profile for a system, in theory we can

flag all system states varying from the established profile as intrusion attempts. However, if the

set of intrusive activities is not identical to the set of anomalous activities, the situation

becomes more interesting instead of being exactly the same, we find few interesting

possibilities. Anomalous activities that are not intrusive are flagged as intrusive, though they

are false positives. Actual intrusive activities that go undetected are called false negatives. This

is a serious issue, and is far more serious than the problem of false positives. One of the main

issues of anomaly detection systems is the selection of threshold levels so that neither of the

above problems is unreasonably magnified. Anomaly detection is usually computationally

expensive because of the overhead of keeping track of and possibly updating several system

profiles. Recent proposed system LEARD (Learning Rules for Anomaly Detection) discovers

relationships among attributes in order to model application protocols [23,24].

3. Computer Attack Taxonomy

A good attack taxonomy makes it possible to classify individual attacks into groups that share

common properties. Taxonomy should hold the property; if classifying in one category

excludes all others because categories do not overlap. The taxonomy of the data we used in our

experiments consists of four groups probing, denial of service, gaining higher level privileges

and accessing a local machine from a remote site with out proper privileges.

3.1 Probing

Probing is a class of attacks where an attacker scans a network to gather information or find

known vulnerabilities. An attacker with a map of machines and services that are available on a

network can use the information to look for exploits. There are different types of probes: some

of them abuse the computer’s legitimate features; some of them use social engineering

techniques. This class of attacks is the most commonly heard and requires very little technical

expertise. Different types of probe attacks are illustrated in Table 1.

Table 1 Probe Attacks

Attack Type Service Mechanism Effect of the attack

Ipsweep Icmp Abuse of feature Identifies active machines

Mscan Many Abuse of feature
Looks for known

vulnerabilities

Nmap Many Abuse of feature
Identifies active ports on a

machine

Saint Many Abuse of feature
Looks for known

vulnerabilities

Satan Many Abuse of feature
Looks for known

Vulnerabilities

3.2 Denial of Service Attacks

Denial of Service (DoS) is a class of attacks where an attacker makes some computing or

memory resource too busy or too full to handle legitimate requests, thus denying legitimate

users access to a machine. There are different ways to launch DoS attacks: by abusing the

computers legitimate features; by targeting the implementations bugs; or by exploiting the

system’s misconfigurations. DoS attacks are classified based on the services that an attacker

renders unavailable to legitimate users. Some of the popular attack types are illustrated in Table

2.

Table 2 Denial of Service Attacks

Attack Type Service Mechanism Effect of the attack

Apache2 http Abuse Crashes httpd

Back http Abuse/Bug Slows down server response

Land http Bug Freezes the machine

Mail bomb N/A Abuse Annoyance

SYN Flood TCP Abuse
Denies service on one or

more ports

Ping of Death Icmp Bug None

Process table TCP Abuse Denies new processes

Smurf Icmp Abuse Slows down the network

Syslogd Syslog Bug Kills the Syslogd

Teardrop N/A Bug Reboots the machine

Udpstrom Echo/ Chargen Abuse Slows down the network

3.3 User to Root Attacks

User to root exploits are a class of attacks where an attacker starts out with access to a normal

user account on the system and is able to exploit vulnerability to gain root access to the system.

Most common exploits in this class of attacks are regular buffer overflows, which are caused by

regular programming mistakes and environment assumptions. Please refer to Table 3 for some

of the attack types in this category.

Table 3 User to Super-User Attacks

Attack Type Service Mechanism
Effect of the

attack

Eject User session Buffer overflow Gains root shell

Ffbconfig User session Buffer overflow Gains root shell

Fdformat User session Buffer overflow Gains root shell

Loadmodule User session
Poor environment

sanitation
Gains root shell

Perl User session
Poor environment

sanitation
Gains root shell

Ps User session
Poor Temp file

management
Gains root shell

Xterm User session Buffer overflow Gains root shell

3.4 Remote to User Attacks

A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a machine

over a network, then exploits machine’s vulnerability to illegally gain local access as a user.

There are different types of R2U attacks; the most common attack in this class is done using

social engineering. Some of the R2U attacks are presented in Table 4.

Table 4 Remote to User Attacks

Attack Type Service Mechanism Effect of the attack

Dictionary
telnet, rlogin,

pop, ftp, imap
Abuse feature Gains user access

Ftp-write ftp Misconfig. Gains user access

Guest telnet, rlogin Misconfig. Gains user access

Imap imap Bug Gains root access

Named dns Bug Gains root access

Phf http Bug
Executes commands as

http user

Sendmail smtp Bug
Executes commands as

root

Xlock smtp Misconfig.
Spoof user to obtain

password

Xnsoop smtp Misconfig.
Monitor key stokes

remotely

Figure 1: Intrusion Detection Data Distribution

4 Data Mining and Computational Intelligence

Data mining (also known as Knowledge Discovery in Databases - KDD) has been defined by

Frawley etl [25] as “The nontrivial extraction of implicit, previously unknown, and potentially

useful information from data”. Data ming techniques use machine learning, statistical and

visulaization techniques to discover and present knowledge from the raw information in a

easily comprehensible form to humans. In the field of intrusion detection data mining programs

are used to analyze audit trails and provide knowledge (features) that help in distinguishing

intrusive patterns form normal activity [17,26].

Soft computing was first proposed by Zadeh [27] to construct new generation computationally

intelligent hybrid systems consisting of neural networks, fuzzy inference system, approximate

reasoning and derivative free optimization techniques. It is well known that the intelligent

systems, which can provide human like expertise such as domain knowledge, uncertain

reasoning, and adaptation to a noisy and time varying environment, are important in tackling

practical computing problems. In contrast with conventional Artificial Intelligence (AI)

techniques which only deal with precision, certainty and rigor the guiding principle of hybrid

systems is to exploit the tolerance for imprecision, uncertainty, low solution cost, robustness,

partial truth to achieve tractability, and better rapport with reality.

4.1 Artificial Neural Networks (ANNs)

The artificial neural network (ANN) methodology enables us to design useful nonlinear

systems accepting large numbers of inputs, with the design based solely on instances of input-

output relationships. Artificial neural network (in the present context, multilayer, feed forward

type networks) consists of a collection of highly-interconnected processing elements to perform

an input-output transformation. The actual transformation is determined by the set of weights

associated with the links connecting elements. The neural network gains knowledge about the

transformation to be performed by iteratively learning from a sufficient training set of samples

or input-output training pairs. A well-trained network can perform the transformation correctly

and also possess some generalization capability.

Since multi-layer feed forward ANNs are capable of making multi-class classifications, an

ANN is employed to perform the intrusion detection, using the same training and testing sets as

those for other connectionist paradigms.

4.1.1 Resilient Back propagation (RP)

The purpose of the resilient back propagation training algorithm is to eliminate the harmful

effects of the magnitudes of the partial derivatives. Only the sign of the derivative is used to

determine the direction of the weight update; the magnitude of the derivative has no effect on

the weight update. The size of the weight change is determined by a separate update value. The

update value for each weight and bias is increased by a factor whenever the derivative of the

performance function with respect to that weight has the same sign for two successive

iterations. The update value is decreased by a factor whenever the derivative with respect that

weight changes sign from the previous iteration. If the derivative is zero, then the update value

remains the same. Whenever the weights are oscillating the weight change will be reduced. If

the weight continues to change in the same direction for several iterations, then the magnitude

of the weight change will be increased [28].

Let us report only one learning algorithm and we need to write a bit in detail. I

can help you a bit here.

4.2 Support Vector Machines (SVMs)

The SVM approach transforms data into a feature space F that usually has a huge dimension. It

is interesting to note that SVM generalization depends on the geometrical characteristics of the

training data, not on the dimensions of the input space [29]. Training a support vector machine

(SVM) leads to a quadratic optimization problem with bound constraints and one linear

equality constraint. Vapnik shows how training a SVM for the pattern recognition problem

leads to the following quadratic optimization problem [30].

Minimize: ∑ ∑∑
= ==

+−=

l

i

ji

l

j

jiji

l

i

i xxkyyW

1 11

),(
2

1
)(αααα (4)

Subject to

Ci

y

i

l

i

ii

≤≤∀

∑
=

α

α

0:

1
 (5)

Where l is the number of training examples α is a vector of l variables and each component

iα corresponds to a training example (xi, yi). The solution of (4) is the vector *
α for which (4) is

minimized and (5) is fulfilled.

4.3 Multivariate Adaptive Regression Splines (MARS)

Splines can be considered as an innovative mathematical process for complicated curve

drawings and function approximation. To develop a spline the X-axis is broken into a

convenient number of regions. The boundary between regions is also known as a knot. With a

sufficiently large number of knots virtually any shape can be well approximated. The MARS

model is a regression model using basis functions as predictors in place of the original data.

The basis function transform makes it possible to selectively blank out certain regions of a

variable by making them zero, and allows MARS to focus on specific sub-regions of the data. It

excels at finding optimal variable transformations and interactions, and the complex data

structure that often hides in high-dimensional data [4].

Given the number of records in most data sets, it is infeasible to approximate the function

y=f(x) by summarizing y in each distinct region of x. For some variables, two regions may not

be enough to track the specifics of the function. If the relationship of y to some x's is different

in 3 or 4 regions, for example, the number of regions requiring examination is even larger than

34 billion with only 35 variables. Given that the number of regions cannot be specified a priori,

specifying too few regions in advance can have serious implications for the final model. A

solution is needed that accomplishes the following two criteria:

Figure 2. MARS Data Estimation Using Spines and Knots (actual data on the right)

• judicious selection of which regions to look at and their boundaries

• judicious determination of how many intervals are needed for each variable

Given these two criteria, a successful method will essentially need to be adaptive to the

characteristics of the data. Such a solution will probably ignore quite a few variables (affecting

variable selection) and will take into account only a few variables at a time (also reducing the

number of regions). Even if the method selects 30 variables for the model, it will not look at all

30 simultaneously. Such simplification is accomplished by a decision tree at a single node, only

ancestor splits are being considered; thus, at a depth of six levels in the tree, only six variables

are being used to define the node.

4.3.1 MARS Smoothing, Splines, Knots Selection and Basis Functions

To estimate the most common form, the cubic spline, a uniform grid is placed on the predictors

and a reasonable number of knots are selected. A cubic regression is then fit within each region.

This approach, popular with physicists and engineers who want continuous second derivatives,

requires many coefficients (four per region) to be estimated. Normally, two constraints, which

dramatically reduce the number of free parameters, can be placed on cubic splines:

• curve segments must join,

• continuous first and second derivatives at knots (higher degree of smoothness)

Figure 2 depicts a MARS spline with three knots. A key concept underlying the spline is the

knot. A knot marks the end of one region of data and the beginning of another. Thus, the knot is

where the behavior of the function changes. Between knots, the model could be global (e.g.,

linear regression). In a classical spline, the knots are predetermined and evenly spaced, whereas

in MARS, the knots are determined by a search procedure. Only as many knots as needed are

included in a MARS model. If a straight line is a good fit, there will be no interior knots. In

MARS, however, there is always at least one "pseudo" knot that corresponds to the smallest

observed value of the predictor [31]. Finding the one best knot in a simple regression is a

straightforward search problem: simply examine a large number of potential knots and choose

the one with the best R
2
. However, finding the best pair of knots requires far more computation,

and finding the best set of knots when the actual number needed is unknown is an even more

challenging task. MARS finds the location and number of needed knots in a forward/backward

stepwise fashion. A model which is clearly over fit with too many knots is generated first; then,

those knots that contribute least to the overall fit are removed. Thus, the forward knot selection

will include many incorrect knot locations, but these erroneous knots will eventually (although

this is not guaranteed), be deleted from the model in the backwards pruning step.

4.4 Linear Genetic Programs (LGPs)

Linear genetic programming is a variant of the GP technique that acts on linear genomes

[15,16]. Its main characteristics in comparison to tree-based GP lies in that the evolvable units

are not the expressions of a functional programming language (like LISP), but the programs of

an imperative language (like C/C ++). An alternate approach is to evolve a computer program

at the machine code level, using lower level representations for the individuals. This can

tremendously hasten up the evolution process as, no matter how an individual is initially

represented, finally it always has to be represented as a piece of machine code, as fitness

evaluation requires physical execution of the individuals. The basic unit of evolution is a native

machine code instruction that runs on the floating-point processor unit (FPU). Since different

instructions may have different sizes, here instructions are clubbed up together to form

instruction blocks of 32 bits each. The instruction blocks hold one or more native machine code

instructions, depending on the sizes of the instructions. A crossover point can occur only

between instructions and is prohibited from occurring within an instruction. However the

mutation operation does not have any such restriction.

4.5 Computational Intelligent Agents (CIA) Based Architecture

The CIA based architecture for detecting computer attacks consists of several modules that will

be executed by the agents in a distributed manner. Communication among the agents is done

utilizing the TCP/IP sockets. Agent modules running on the host computers consist of data

collection agents, data analysis agents, and response agents. Agents running on the secure

devices consist of the agent control modules that include agent regeneration, agent dispatch,

maintaining intrusion signatures and information of the features and feature ranking algorithms

that help identify the intrusions.

Figure 3: Computational Intelligent Agents Architecture

Host Agents: Reside on the hosts of the internal network and perform the tasks

specified by the master agent. These agents are implemented to be read only and fragile. In the

event of tampering or modification the agent reports to the server agent and automatically ends

its life.

Figure 4: Functionality of Host Based Agents

Server Agents: Reside on the secure server of the network. Controls the individual

host agents for monitoring the network and manages communication between the agents if

necessary. These agents manage the life cycle and also update the host agents with new

detection, feature extraction, response and trace mechanisms.

Figure 5: Functionality of Server Agents

Advantages of the proposed model:

� With prior knowledge of the device and user profiles of the network, specific agents can be

designed and implemented in a distributed fashion

� Highly optimized parallel algorithms can be designed and implemented independently for

data collection agents, data analysis agents, and response agents

� Analysis for computationally limited devices can be offloaded to cooperating systems and

run in parallel to provide capabilities not otherwise available on such devices

� Attack-specific agents can be implemented and dispatched to respond to specific new

threats

� Efficient detection algorithms can be implemented with less overhead

Data Collection

System Calls

Data Analysis

CI Techniques

Response

Blocking IP

Addr

Agent Controller

Agent Controller

Device Specific Agents

Attack Specific Agents

Analysis Algorithms

Attack Specific Detection

Feature Ranking

User and Device

Profiles

Operating System

Response

Mechanisms

Blocking IP Addr

� Rapid intrusion response and trace back can be performed more easily with the agents

communicating with each other

� Adjustable detection thresholds can be implemented

5 Experiments

(Write a bit more about the data)
In our experiments, we perform 5-class classification. The (training and testing) data set

contains 11982 randomly generated points from the five classes, with the number of data from

each class proportional to its size, except that the smallest class is completely included. The

normal data belongs to class1, probe belongs to class 2, denial of service belongs to class 3,

user to super user belongs to class 4, remote to local belongs to class 5. A different randomly

selected set of 6890 points of the total data set (11982) is used for testing different intelligent

techniques.

5.1 Experiments Using Neural Networks

The same data set describe in section 2 is being used for training and testing different neural

network algorithms. The set of 5092 training data is divided in to five classes: normal, probe,

denial of service attacks, user to super user and remote to local attacks. Where the attack is a

collection of 22 different types of instances that belong to the four classes described in section

2, and the other is the normal data. In our study we used two hidden layers with 20 and 30

neurons each and the networks were trained using RP, SCG and OSS algorithms.

The network was set to train until the desired mean square error of 0.001 was met. During the

training process the goal was met at 303 epochs for SCG, 66 epochs for RP and 638 epochs for

OSS.

As multi-layer feed forward networks are capable of multi-class classifications, we partition the

data into 5 classes (Normal, Probe, Denial of Service, and User to Root and Remote to Local).

SCG performed with an accuracy of 95.25%; network using RP achieved an accuracy of

97.04%; network using OSS performed with an accuracy of 93.60%.

Table 5 Performance of the Best Neural Network Training Algorithm (RP)

 Normal Probe DoS U2Su R2L %

Normal 1394 5 1 0 0 99.6

Probe 49 649 2 0 0 92.7

DoS 3 101 4096 2 0 97.5

U2Su 0 1 8 12 4 48.0

R2L 0 1 6 21 535 95.0

% 96.4 85.7 99.6 34.3 99.3

The top-left entry of Table 6 shows that 1394 of the actual “normal” test set were detected to be

normal; the last column indicates that 99.6 % of the actual “normal” data points were detected

correctly. In the same way, for “Probe” 649 of the actual “attack” test set were correctly

detected; the last column indicates that 92.7% of the actual “Probe” data points were detected

correctly. The bottom row shows that 96.4% of the test set said to be “normal” indeed were

“normal” and 85.7% of the test set classified, as “probe” indeed belongs to Probe. The overall

accuracy of the classification is 97.04 with a false positive rate of 2.76% and false negative rate

of 0.20 %.

5.2 Experiments Using Support Vector Machines

The data set described in section 4 is being used to test the performance of support vector

machines. Note the same training test (5092) used for training the neural networks and the same

testing test (6890) used for testing the neural networks are being used to validate the

performance. Because SVMs are only capable of binary classifications, we will need to employ

five SVMs, for the 5-class classification problem in intrusion detection, respectively. We

partition the data into the two classes of “Normal” and “Rest” (Probe, DoS, U2Su, R2L)

patterns, where the Rest is the collection of four classes of attack instances in the data set. The

objective is to separate normal and attack patterns. We repeat this process for all classes.

Training is done using the RBF (radial bias function) kernel option; an important point of the

kernel function is that it defines the feature space in which the training set examples will be

classified. Table 6 summarizes the results of the experiments.

5.3 Experiments Using MARS

We use 5 basis functions and selected a setting of minimum observation between knots as 10.

The MARS training mode is being set to the lowest level to gain higher accuracy rates. Five

MARS models are employed to perform five class classifications (normal, probe, denial of

service, user to root and remote to local). We partition the data into the two classes of “Normal”

and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the collection of four classes

of attack instances in the data set. The objective is to separate normal and attack patterns. We

repeat this process for all classes. Table 6 summarizes the results of MARS.

5.4 Experiments Using LGPs

LGP manipulates and evolves program at the machine code level [5]. The settings of various

LGP parameters are of utmost importance for successful performance of the system. This

section discusses the different parameter settings used for the experiment, justification of the

choices and the significances of these parameters. The population space has been subdivided

into multiple subpopulation or demes. Migration of individuals among the subpopulations

causes evolution of the entire population. It helps to maintain diversity in the population, as

migration is restricted among the demes. Moreover, the tendency towards a bad local minimum

in one deme can be countered by other demes with better search directions. The various LGP

search parameters are the mutation frequency, crossover frequency and the reproduction

frequency: The crossover operator acts by exchanging sequences of instructions between two

tournament winners. A constant crossover rate of 90% has been used for all the simulations.

Five LGP models are employed to perform five class classifications (normal, probe, denial of

service, user to root and remote to local). We partition the data into the two classes of “Normal”

and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the collection of four classes

of attack instances in the data set. The objective is to separate normal and attack patterns. We

repeat this process for all classes. Table 6 summarizes the results of the experiments using

LGPs.

Table 6 Performance Comparison of Testing for 5 class Classifications

Class % Accuracy

 RP SVM MARS LGP

Normal 99.57 98.42 99.71 99.71

Probe 92.71 98.57 56.42 99.86

DoS 97.47 99.45 96 99.90

U2Su 48.00 64.00 40.00 64

R2L 95.73 97.33 98.75 99.47

Overall 97.09 98.85 92.75 99.73

5.5 Experiments Using CIAs

Experiments are performed on a real network using two clients and the server that serves the

computer science network. The clients had CIA installed on them to identify or detect probes

that are targeted to the server we are protecting. Our primary goal in these experiments is to

detect probes targeting the server we are trying to protect. Our network parser gives the

summary of each connection made from a host to the server and constructs a feature set to input

into a classifier for classification. The output form a classifier is either normal or probe for each

connection. Nmap an open source tool is used to collect probe data. Probing is a class of attacks

where an attacker scans a network to gather information or find known vulnerabilities. An

attacker with a map of machines and services that are available on a network can use the

information to look for exploits. There are different types of probes: some of them abuse the

computer’s legitimate features; some of them use social engineering techniques. This class of

attacks is the most commonly heard and requires very little technical expertise. Nmap is

installed on the clients that have CIA installed. A variety of probes SYN stealth, FIN stealth,

ping sweep, UDP scan, null scan, xmas tree, IP scan, idle scan, ACK scan, window scan, RCP

scan, and list scan with several options are targeted at the server. Normal data included multiple

sessions of ftp, telnet, SSH, http, SMTP, pop3 and imap. Network data originating form a host

to the server that included both normal and probes is collected for analysis; for proper labeling

of data for training the classifiers normal data and probe data are collected at different times.

55.1 CIA System and Implementation

Computer probes that are intended to discover information of a computer system can be

detected by careful observation of network packets. Probing tools in an effort to identify host

information send connection requests to closed ports and non-existing systems. Knowledge of

how a network and its hosts are being used will help in distinguishing between normal activity

and probes.

The primary goal of CIA is to detect probes at the host level. Our system is integrated with

three major components: a network data parser, data classifier and a response mechanism.

Network data parser we developed uses the WINPCAP library to capture network packets to

extract the features required for classification. Output summary of the parser includes six

features, duration of the connection to the target machine, the protocol used, the service,

number of source bytes, and number of destination bytes. Feature set for our experiments is

chosen based on our feature ranking results obtained using the DARPA intrusion detection

evaluation data [17]. Network Parser reformats the extracted features to input a classifier to

detect probes among other normal network packets. Once the feature set is being constructed it

is fed into a suite of classifiers. Classifiers used in our experiments are SVMs, MARS and LGP.

Output from the classifier is the classification of the connection into normal activity or probe. If

a connection is classified as probe a classifier sends a message to the server using TCP/IP

sockets and the boundary controllers are updated for necessary response with human

intervention to block malicious activity. Table 7 summarizes the results of CIAs using different

classifiers to detect stealthy probes.

Figure 6. CIA Prototype Implementation

Table 7 Performance Comparison of Classifiers to Detect Probes Using CIAs

Class % Accuracy

 SVM MARS LGP

Normal 99.75 99.12 100

6 Significance of Input Features

Feature selection and ranking [17,26] is an important issue in intrusion detection. Of the large

number of features that can be monitored for intrusion detection purpose, which are truly

useful, which are less significant, and which may be useless? The question is relevant because

the elimination of useless features (the so-called audit trail reduction) enhances the accuracy of

detection while speeding up the computation, thus improving the overall performance of an

IDS. In cases where there are no useless features, by concentrating on the most important ones

we may well improve the time performance of an IDS without affecting the accuracy of

detection in statistically significant ways.

The feature ranking and selection problem for intrusion detection is similar in nature to various

engineering problems that are characterized by:

Network Parser

Classifier

Response

� Having a large number of input variables x = (x1, x2, …, xn) of varying degrees of importance

to the output y; i.e., some elements of x are essential, some are less important, some of them

may not be mutually independent, and some may be useless or irrelevant (in determining the

value of y)

� Lacking an analytical model that provides the basis for a mathematical formula that precisely

describes the input-output relationship, y = F (x)

� Having available a finite set of experimental data, based on which a model (e.g. neural

networks) can be built for simulation and prediction purposes

Due to the lack of an analytical model, one can only seek to determine the relative importance

of the input variables through empirical methods. A complete analysis would require

examination of all possibilities, e.g., taking two variables at a time to analyze their dependence

or correlation, then taking three at a time, etc. This, however, is both infeasible (requiring 2
n

experiments!) and not infallible (since the available data may be of poor quality in sampling the

whole input space). In the following, therefore, we apply the technique of deleting one feature

at a time and support vector decision function to rank the input features and identify the most

important ones for intrusion detection using SVMs. Table 8 summarizes the results of feature

ranking experiments using PBRM and SVDF.

6.1 Performance-Based Ranking Method (PBRM)

We first describe a general (i.e., independent of the modeling tools being used), performance-

based input ranking methodology: One input feature is deleted from the data at a time; the

resultant data set is then used for the training and testing of the classifier. Then the classifier’s

performance is compared to that of the original classifier (based on all features) in terms of

relevant performance criteria. Finally, the importance of the feature is ranked according to a set

of rules based on the performance comparison.

The procedure is summarized as follows:

1. compose the training set and the testing set;

for each feature do the following

2. delete the feature from the (training and testing) data;

3. use the resultant data set to train the classifier;

4. analyze the performance of the classifier using the test set, in terms of the selected

performance criteria;

5. rank the importance of the feature according to the rules;

6.1.1 Performance Metrics

To rank the importance of the 41 features (of the DARPA data) in an SVM-based IDS, we

consider three main performance criteria: overall accuracy of (5-class) classification; training

time; and testing time. Each feature will be ranked as “important”, “secondary”, or

“insignificant”, according to the following rules that are applied to the result of performance

comparison of the original 41-feature SVM and the 40-feature SVM:

1. If accuracy decreases and training time increases and testing time decreases, then the

feature is important
2. If accuracy decreases and training time increases and testing time increases, then the

feature is important
3. If accuracy decreases and training time decreases and testing time increases, then the

feature is important

4. If accuracy unchanges and training time increases and testing time increases, then the

feature is important
5. If accuracy unchanges and training time decreases and testing time increases, then

the feature is secondary

6. If accuracy unchanges and training time increases and testing time decreases, then

the feature is secondary

7. If accuracy unchanges and training time decreases and testing time decreases, then

the feature is unimportant
8. If accuracy increases and training time increases and testing time decreases, then the

feature is secondary

9. If accuracy increases and training time decreases and testing time increases, then the

feature is secondary

10. If accuracy increases and training time decreases and testing time decreases, then the

feature is unimportant

6.2 SVM-specific Feature Ranking Method

Information about the features and their contribution towards classification is hidden in the

support vector decision function. Using this information one can rank their significance, i.e., in

the equation

F (X) = ΣWiXi + b

The point X belongs to the positive class if F(X) is a positive value. The point X belongs to the

negative class if F(X) is negative. The value of F(X) depends on the contribution of each value

of X and Wi. The absolute value of Wi measures the strength of the classification. If Wi is a

large positive value then the i
th
 feature is a key factor for positive class. If Wi is a large negative

value then the i
th
 feature is a key factor for negative class. If Wi is a value close to zero on

either the positive or the negative side, then the i
th
 feature does not contribute significantly to

the classification. Based on this idea, a ranking can be done by considering the support vector

decision function.

6.2.2 Support Vector Decision Function Ranking Method (SVDFRM)

The input ranking is done as follows: First the original data set is used for the training of the

classifier. Then the classifier’s decision function is used to rank the importance of the features.

The procedure is:

1. Calculate the weights from the support vector decision function;

2. Rank the importance of the features by the absolute values of the weights;

Table 8 Performance of SVMs Using Important Features

Class
No of Features

Identified

Training

Time (sec)

Testing

Time (sec)
Accuracy (%)

 PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM

Normal 25 20 9.36 4.58 1.07 0.78 99.59 99.55

Probe 7 11 37.71 40.56 1.87 1.20 99.38 99.36

DOS 19 11 22.79 18.93 1.84 1.00 99.22 99.16

U2Su 8 10 2.56 1.46 0.85 0.70 99.87 99.87

R2L 6 6 8.76 6.79 0.73 0.72 99.78 99.72

7 Summary and Conclusions

Current IDS testing techniques to data are becoming increasingly complex. There are no

standard testing standards that can quantify the performance of IDS in terms scalability, data

handling rate, time to detect an attack, etc. Current IDS heavily rely on unencrypted audit trails

and if the data is encrypted this might hinder the performance or even the IDS might be come

absolute in terms of detecting intrusions. Our research has clearly shown the importance of

using distributed computational intelligent agent approach for modeling intrusion detection

systems.

� SVMs outperform MARS and ANNs in the important respects of scalability (SVMs can

train with a larger number of patterns, while would ANNs take a long time to train or fail to

converge at all when the number of patterns gets large); training time and running time

(SVMs run an order of magnitude faster); and prediction accuracy.

� Resilient back propagation achieved the best performance among the neural networks in

terms of accuracy (97.04 %) and training (67 epochs).

� LGPs outperform SVMs and RBP in terms of detection accuracies with the expense of time

Regarding feature ranking, we observe that

� The two feature ranking methods produce largely consistent results: except for the class 1

(Normal) and class 4 (U2Su) data, the features ranked as Important by the two methods

heavily overlap.

� The most important features for the two classes of ‘Normal’ and ‘DOS’ heavily overlap.

� ‘U2Su’ and ‘R2L’, the two smallest classes representing the most serious attacks, each has

a small number of important features and a large number of secondary features.

� The performances of (a) using the important features for each class, Table 2, (b) using the

union of important features, Table 4 and Table 5, and (c) using the union of important and

secondary features for each class, Table 3, do not show significant differences, and are all

similar to that of using all 41 features.

� Using the important features for each class gives the most remarkable performance: the

testing time decreases in each class; the accuracy increases slightly for one class ‘Normal’,

decreases slightly for two classes ‘Probe’ and ‘DOS’, and remains the same for the two

most serious attack classes.

References

[1] Kendall K. (1998) “A Database of Computer Attacks for the Evaluation of Intrusion

Detection Systems”, Master's Thesis, Massachusetts Institute of Technology.

[2] Hertz J., Krogh A., Palmer R. G. (1991) “Introduction to the Theory of Neural

Computation,” Addison –Wesley.

[3] Joachims T. (1998) “Making Large-Scale SVM Learning Practical,” LS8-Report,

University of Dortmund, LS VIII-Report.

[4] Friedman J. H. (1991) “Multivariate Adaptive Regression Splines”, Analysis of Statistics,

Vol 19, pp. 1-141.

[5] Banzhaf. W., Nordin. P., Keller. E. R., and Francone F. D. (1998) “Genetic

Programming: An Introduction on the Automatic Evolution of Computer Programs and

its Applications,” Morgan Kaufmann Publishers, Inc.

[6] Denning D. (1987) “An Intrusion-Detection Model,” IEEE Transactions on Software

Engineering, Vol.SE-13, No 2, pp. 222-232.

[7] Kumar S., Spafford E. H. (1994) “An Application of Pattern Matching in Intrusion

Detection,” Technical Report CSD-TR-94-013. Purdue University.

[8] Lunt T., Tamaru A., Gilham F., Jagannathan R., Jalali C., Neumann, P. G., Javitz, H. S.,

Valdes A., Garvey T. D. (1992) “A real time Intrusion Detection Expert System (IDES) -

Final Report, “SRI International, Menlo Park, CA.

[9] Ilgun and Koral. (1993) “USTAT: A Real-time Intrusion Detection System for UNIX,”

Proceedings of the 1993 Computer Society Symposium on Research in Security and

Privacy. Oakland, California, May 24-26, 1993. Los Alamitos, CA: IEEE Computer

Society Press, pp. 16-29.

[10] Anderson D., Lunt T. F., Javitz H., Tamaru, Valdes A. (1995) “A. Detecting Unusual

Program Behavior Using the Stastistical Component of the Next-generation Intrusion

Detection Expert System (NIDES),” SRI-CSL-95-06, SRI International, Menlo Park, CA.

[11] Porras A. and Neumann P. G. EMERALD. (1997) “Event Monitoring Enabling

Responses to Anomalous Live Disturbances,” In Proceedings of the National Information

Systems Security Conference, pp. 353-365.

[12] Debar H., Becke B., Siboni D. (1992) “A Neural Network Component for an Intrusion

Detection System,” Proceedings of the IEEE Computer Society Symposium on Research

in Security and Privacy, pp. 240-250.

[13] Cannady J. (1998) “Artificial Neural Networks for Misuse Detection,” National

Information Systems Security Conference, pp.368-381.

[14] S Mukkamala, G Janowski, A H. Sung. (2001) Intrusion Detection Using Neural

Networks and Support Vector Machines. Proceedings of Hybrid Information Systems

Advances in Soft Computing, Physica Verlag, Springer Verlag, ISBN 3790814806,

pp.121-138.

[15] Stolfo J., Fan W., Lee W., Prodromidis A., and Chan P. K. (2000) “Cost-based Modeling

and Evaluation for Data Mining With Application to Fraud and Intrusion Detection,”

Results from the JAM Project by Salvatore.

[16] Jianxiong L., and Bridges S. M. (2000) “Mining Fuzzy Association Rules and Fuzzy

Frequency Episodes for Intrusion Detection,” International Journal of Intelligent

Systems, Vol. 15, No. 8, pp. 687-704

[17] Mukkamala S., and Sung A. H. (2003) Feature Selection for Intrusion Detection Using

Neural Networks and Support Vector Machines. Journal of the Transportation Research

Board of the National Academics, Transportation Research Record No 1822, pp. 33-39.

[18] Crosbie M., and Spafford E. H. (1995) “Defending a Computer System Using

Autonomous Agents,” Technical Report CSD-TR-95-022.

[19] Prodromidis L., and Stolfo S. J. (1999) “Agent-Based Distributed Learning Applied to

Fraud Detection,” Technical Report, CUCS-014-99.

[20] Dasgupta D. (1999) “Immunity –Based Intrusion Detection System: A general

Framework,” Proceedings of 22
nd

 National Information Systems Security Conference

(NISSC), pp. 147-160.

[21] Helmer G., Wong J., Honavar V., and Miller L. (2003). Lightweight Agents for Intrusion

Detection. Journal of Systems and Software, pp. 109-122.

[22] Kumar S., and Spafford E. H. (1994) “A pattern matching model for misuse intrusion

detection,” In Proceedings of the 17th National Computer Security Conference, pp. 11-

21.

[23] Mahoney M., and Chan P. K. (2003) “An Analysis of the 1999 DARPA/Lincoln

Laboratory Evaluation Data for Network Anomaly Detection,” 6th Intl. Symp. Recent

Advances in Intrusion Detection, pp. 220-237.

[24] Chan P. K., Mahoney M., and M. Arshad. (2003) “Learning Rules and Clusters for

Anomaly Detection in Network Traffic,” Managing Cyber Threats: Issues, Approaches

and Challenges Kluwer, to appear.

[25] Frawley W., Piatetsky-Shapiro G., and C. Matheus C. (1992) “Knowledge Discovery in

Databases: An Overview,” AI Magazine, pp. 213-228.

[26] Lee W., and Stolfo S. J. (2000) A Framework for Constructing Features and Models for

Intrusion Detection Systems. ACM Transactions on Information and System Security,

Volume 3, Number 4, pp. 227-261.

[27] Zadeh L. A., Roles of Soft Computing and Fuzzy Logic in the Conception, Design and

Deployment of Information/Intelligent Systems, Computational Intelligence: Soft

Computing and Fuzzy-Neuro Integration with Applications, O. Kaynak, Zadeh L. A.,

Turksen B., Rudas I. J. (Eds.), pp 1-9.

[28] Riedmiller M., and Braun H. (1993) “A direct adaptive method for faster back

propagation learning: The RPROP algorithm,” Proceedings of the IEEE International

Conference on Neural Networks, San Francisco.

[29] Joachims T. (2000) “SVMlight is an Implementation of Support Vector Machines

(SVMs) in C,” http://ais.gmd.de/~thorsten/svm_light. University of Dortmund.

Collaborative Research Center on Complexity Reduction in Multivariate Data (SFB475).

[30] Vapnik V. (1995) “The Nature of Statistical Learning Theory. Springer-Verlag,” New

York.

[31] Steinberg D., Colla P. L., and Kerry M. (1999) “MARS User Guide”, San Diego, CA:

Salford Systems.

