
Designing Intrusion Detection Systems: Architectures, 

Challenges and Perspectives 

Srinivas Mukkamala, Andrew Sung
 
and Ajith Abraham

*
 

Department of Computer Science, New Mexico Tech, USA 
*
Department of Computer Science, Oklahoma State University, USA 

 

Abstract:  

Computer security is defined as the protection of computing systems against threats to 

confidentiality, integrity, and availability. There are two types of intruders: the external 

intruders who are unauthorized users of the machines they attack, and internal intruders, who 

have permission to access the system with some restrictions. Due to increasing incidents of 

cyber attacks, building effective intrusion detection systems are essential for protecting 

information systems security, and yet it remains an elusive goal and a great challenge. We 

present the state-of-the-art of the evolution of intrusion detection systems and address some of 

the research challenges to design efficient and effective intrusion detection systems. Further 

distributed intrusion detection systems are presented which could be used to detect and prevent 

attacks that would be invisible to any single system or whose significance would be missed if 

information from only a single system were available. We finally illustrate how a data mining 

approach could reduce abundant/redundant and noisy data and design effective intrusion 

detection systems. 

1 Introduction 

Intrusion detection is a problem of great significance to critical infrastructure protection owing 

to the fact that computer networks are at the core of the nation’s operational control. This paper 

summarizes the use of different artificial intelligent techniques to build efficient IDSs in terms 

of classification accuracy, learning time and testing time. Since the ability of a good detection 

technique gives more accurate results, it is critical for intrusion detection in order for the IDS to 

achieve maximal performance.  Therefore, we study different intelligent computing techniques 

for building models based on DARPA intrusion detection data illustrated in Figure 1[1]. This 

paper summarizes the performance of Intrusion Detection Systems (IDSs) built using Artificial 

Neural Networks or ANNs [2], Support Vector Machines or SVMs [3], Multivariate Adaptive 

Regression Splines or MARS [4] and Liner Genetic Programs (LGPs) [5]. Single point or 

centralized IDSs may have packet loss on heavy load conditions on Gigabit networks, such a 

situation will hinder the performance of an IDS.  Distributed computational intelligent agents 

distribute the processing effort of detecting intrusions among multiple agents that are 

distributed on the network; that help detect intrusions that are missed by the centralized IDS. 

Since most of the intrusions can be uncovered by examining patterns of user activities, many 

IDSs have been built by utilizing the recognized attack and misuse patterns that can classify a 

user’s activity as normal or abnormal (attack). Data mining techniques are used to analyze audit 

trails and extract knowledge (features) that help in distinguishing intrusive patterns form 

normal patterns. Feature rankings algorithms help in deciding which features are important for 

classifying intrusions and which ones are redundant or noisy. Several intelligent techniques 

including but not limited to ANNs, SVMs, Petri nets, and data mining techniques are being 

used to build intrusion detection systems. In this paper, we will concentrate on using SVMs, 



MARS, LGPs and ANNs with different training functions to achieve better classification 

accuracies. The data we used in our experiments originated from Lincoln Lab. It was developed 

for intrusion detection system evaluations by DARPA and is considered a benchmark for 

intrusion detection evaluations [1].  

In the rest of the paper, a brief introduction to related work in the field of intrusion detection is 

given in section 2. A brief introduction to computer attack taxonomy and the data we used is 

given in section 3. In section 4 we describe the theoretical aspects of data mining, 

computational intelligence, ANNs, SVMs, and MARS and LGPs. Implementation of 

distributed computational intelligent agents for intrusion detection is also described in section 

4. In section 5 we present the experimental results of ANNs, SVMs, MARS and distributed 

computational intelligent agents to detect probes. In section 6 we describe the importance of 

feature ranking for IDS and summarize the results obtained using the important features for 

classifying intrusions. In section 7, we summarize our experience of using artificial intelligent 

techniques to build IDSs. 

2 Intrusion Detection Systems and Related Research 

Identifying unauthorized use, misuse and attacks on information systems is defined as intrusion 

detection [6,7]. The most popular way to detect intrusions has been done by using audit data 

generated by operating systems and by networks. Since almost all activities are logged on a 

system, it is possible that a manual inspection of these logs would allow intrusions to be 

detected.  It is important to analyze the audit data even after an attack has occurred, for 

determining the extent of damage occurred, this analysis helps in attack trace back and also 

helps in recording the attack patterns for future prevention of such attacks. An intrusion 

detection system can be used to analyze audit data for such insights. This makes intrusion 

detection system a valuable real-time detection and prevention tool as well as a forensic 

analysis tool.  

Soft computing techniques are being widely used by the IDS community due to their 

generalization capabilities that help in detecting know intrusions and unknown intrusions or the 

attacks that have no previously described patterns. Earlier studies have utilized a rule based 

approach for intrusion detection, but had a difficulty in identifying new attacks or attacks that 

had no previously describe patterns [8-11]. Lately the emphasis is being shifted to learning by 

examples and data mining paradigms. Neural networks have been extensively used to identify 

both misuse and anomalous patterns [12-14]. Recently support vector machines and their 

variants are being proposed to detect intrusions [14]. Several researchers proposed data mining 

techniques to identify key patterns that help in detecting intrusions [15-17]. Distributed agent 

technology is being proposed by a few researchers to overcome the inherent limitations of the 

client-server paradigm and to detect intrusions in real time [18-21].  

2.1 Misuse Detection 

The idea of misuse detection is to represent attacks in the form of a pattern or a signature so 

that the same attack can be detected and prevented in future. These systems can detect many or 

all known attack patterns [22], but they are of little use for detecting naive attack methods. The 

main issues of misuse detection is how to build signatures that include possible signatures of 

attacks build a signature that includes all possible variations of the pertinent attack to avoid 

false negatives, and how to build signatures that do not match non-intrusive activities to avoid 

false positives. 



2.2 Anomaly Detection 

The idea here is that if we can establish a normal activity profile for a system, in theory we can 

flag all system states varying from the established profile as intrusion attempts. However, if the 

set of intrusive activities is not identical to the set of anomalous activities, the situation 

becomes more interesting instead of being exactly the same, we find few interesting 

possibilities. Anomalous activities that are not intrusive are flagged as intrusive, though they 

are false positives. Actual intrusive activities that go undetected are called false negatives. This 

is a serious issue, and is far more serious than the problem of false positives. One of the main 

issues of anomaly detection systems is the selection of threshold levels so that neither of the 

above problems is unreasonably magnified. Anomaly detection is usually computationally 

expensive because of the overhead of keeping track of and possibly updating several system 

profiles. Recent proposed system LEARD (Learning Rules for Anomaly Detection) discovers 

relationships among attributes in order to model application protocols [23,24].   

3. Computer Attack Taxonomy 

A good attack taxonomy makes it possible to classify individual attacks into groups that share 

common properties. Taxonomy should hold the property; if classifying in one category 

excludes all others because categories do not overlap. The taxonomy of the data we used in our 

experiments consists of four groups probing, denial of service, gaining higher level privileges 

and accessing a local machine from a remote site with out proper privileges.  

3.1 Probing 

Probing is a class of attacks where an attacker scans a network to gather information or find 

known vulnerabilities. An attacker with a map of machines and services that are available on a 

network can use the information to look for exploits. There are different types of probes: some 

of them abuse the computer’s legitimate features; some of them use social engineering 

techniques. This class of attacks is the most commonly heard and requires very little technical 

expertise. Different types of probe attacks are illustrated in Table 1. 

Table 1 Probe Attacks 

Attack Type Service Mechanism Effect of the attack 

Ipsweep Icmp Abuse of feature Identifies active machines 

Mscan Many Abuse of feature 
Looks for known 

vulnerabilities 

Nmap Many Abuse of feature 
Identifies active ports on a 

machine 

Saint Many Abuse of feature 
Looks for known 

vulnerabilities 

Satan Many Abuse of feature 
Looks for known 

Vulnerabilities 

3.2 Denial of Service Attacks 

Denial of Service (DoS) is a class of attacks where an attacker makes some computing or 

memory resource too busy or too full to handle legitimate requests, thus denying legitimate 

users access to a machine. There are different ways to launch DoS attacks: by abusing the 



computers legitimate features; by targeting the implementations bugs; or by exploiting the 

system’s misconfigurations. DoS attacks are classified based on the services that an attacker 

renders unavailable to legitimate users. Some of the popular attack types are illustrated in Table 

2. 

Table 2 Denial of Service Attacks 

Attack Type Service Mechanism Effect of the attack 

Apache2 http Abuse Crashes httpd 

Back http Abuse/Bug Slows down server response 

Land http Bug Freezes the machine 

Mail bomb N/A Abuse Annoyance 

SYN Flood TCP Abuse 
Denies service on one or 

more ports 

Ping of Death Icmp Bug None 

Process table TCP Abuse Denies new processes 

Smurf Icmp Abuse Slows down the network 

Syslogd Syslog Bug Kills the Syslogd 

Teardrop N/A Bug Reboots the machine 

Udpstrom Echo/ Chargen Abuse Slows down the network 

3.3 User to Root Attacks 

User to root exploits are a class of attacks where an attacker starts out with access to a normal 

user account on the system and is able to exploit vulnerability to gain root access to the system. 

Most common exploits in this class of attacks are regular buffer overflows, which are caused by 

regular programming mistakes and environment assumptions. Please refer to Table 3 for some 

of the attack types in this category. 

Table 3 User to Super-User Attacks 

Attack Type Service Mechanism 
Effect of the 

attack 

Eject User session Buffer overflow Gains root shell 

Ffbconfig User session Buffer overflow Gains root shell 

Fdformat User session Buffer overflow Gains root shell 

Loadmodule User session 
Poor environment 

sanitation 
Gains root shell 

Perl User session 
Poor environment 

sanitation 
Gains root shell 

Ps User session 
Poor Temp file 

management 
Gains root shell 

Xterm User session Buffer overflow Gains root shell 



3.4 Remote to User Attacks 

A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a machine 

over a network, then exploits machine’s vulnerability to illegally gain local access as a user. 

There are different types of R2U attacks; the most common attack in this class is done using 

social engineering. Some of the R2U attacks are presented in Table 4. 

Table 4 Remote to User Attacks 

Attack Type Service Mechanism Effect of the attack 

Dictionary 
telnet, rlogin, 

pop, ftp, imap 
Abuse feature Gains user access 

Ftp-write ftp Misconfig. Gains user access 

Guest telnet,  rlogin Misconfig. Gains user access 

Imap imap Bug Gains root access 

Named dns Bug Gains root access 

Phf http Bug 
Executes commands as 

http user 

Sendmail smtp Bug 
Executes commands as 

root 

Xlock smtp Misconfig. 
Spoof user to obtain 

password 

Xnsoop smtp Misconfig. 
Monitor key stokes 

remotely 

 

Figure 1: Intrusion Detection Data Distribution 



4 Data Mining and Computational Intelligence  

Data mining (also known as Knowledge Discovery in Databases - KDD) has been defined by 

Frawley etl [25] as “The nontrivial extraction of implicit, previously unknown, and potentially 

useful information from data”. Data ming techniques use machine learning, statistical and 

visulaization techniques to discover and present knowledge from the raw information in a 

easily comprehensible form to humans. In the field of intrusion detection data mining programs 

are used to analyze audit trails and provide knowledge (features) that help in distinguishing 

intrusive patterns form normal activity [17,26]. 

Soft computing was first proposed by Zadeh [27] to construct new generation computationally 

intelligent hybrid systems consisting of neural networks, fuzzy inference system, approximate 

reasoning and derivative free optimization techniques. It is well known that the intelligent 

systems, which can provide human like expertise such as domain knowledge, uncertain 

reasoning, and adaptation to a noisy and time varying environment, are important in tackling 

practical computing problems. In contrast with conventional Artificial Intelligence (AI) 

techniques which only deal with precision, certainty and rigor the guiding principle of hybrid 

systems is to exploit the tolerance for  imprecision, uncertainty, low solution cost, robustness, 

partial truth to achieve tractability, and better rapport with reality. 

4.1 Artificial Neural Networks (ANNs) 

The artificial neural network (ANN) methodology enables us to design useful nonlinear 

systems accepting large numbers of inputs, with the design based solely on instances of input-

output relationships. Artificial neural network (in the present context, multilayer, feed forward 

type networks) consists of a collection of highly-interconnected processing elements to perform 

an input-output transformation. The actual transformation is determined by the set of weights 

associated with the links connecting elements. The neural network gains knowledge about the 

transformation to be performed by iteratively learning from a sufficient training set of samples 

or input-output training pairs. A well-trained network can perform the transformation correctly 

and also possess some generalization capability. 

Since multi-layer feed forward ANNs are capable of making multi-class classifications, an 

ANN is employed to perform the intrusion detection, using the same training and testing sets as 

those for other connectionist paradigms.  

4.1.1 Resilient Back propagation (RP) 

The purpose of the resilient back propagation training algorithm is to eliminate the harmful 

effects of the magnitudes of the partial derivatives. Only the sign of the derivative is used to 

determine the direction of the weight update; the magnitude of the derivative has no effect on 

the weight update. The size of the weight change is determined by a separate update value. The 

update value for each weight and bias is increased by a factor whenever the derivative of the 

performance function with respect to that weight has the same sign for two successive 

iterations. The update value is decreased by a factor whenever the derivative with respect that 

weight changes sign from the previous iteration. If the derivative is zero, then the update value 

remains the same. Whenever the weights are oscillating the weight change will be reduced. If 

the weight continues to change in the same direction for several iterations, then the magnitude 

of the weight change will be increased [28]. 

Let us report only one learning algorithm and we need to write a bit in detail. I 

can help you a bit here. 



4.2 Support Vector Machines (SVMs) 

The SVM approach transforms data into a feature space F that usually has a huge dimension. It 

is interesting to note that SVM generalization depends on the geometrical characteristics of the 

training data, not on the dimensions of the input space [29]. Training a support vector machine 

(SVM) leads to a quadratic optimization problem with bound constraints and one linear 

equality constraint. Vapnik shows how training a SVM for the pattern recognition problem 

leads to the following quadratic optimization problem [30].  
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Where l is the number of training examples α is a vector of l variables and each component 

iα corresponds to a training example (xi, yi). The solution of (4) is the vector *
α for which (4) is 

minimized and (5) is fulfilled.  

4.3 Multivariate Adaptive Regression Splines (MARS) 

Splines can be considered as an innovative mathematical process for complicated curve 

drawings and function approximation. To develop a spline the X-axis is broken into a 

convenient number of regions. The boundary between regions is also known as a knot. With a 

sufficiently large number of knots virtually any shape can be well approximated. The MARS 

model is a regression model using basis functions as predictors in place of the original data. 

The basis function transform makes it possible to selectively blank out certain regions of a 

variable by making them zero, and allows MARS to focus on specific sub-regions of the data. It 

excels at finding optimal variable transformations and interactions, and the complex data 

structure that often hides in high-dimensional data [4].  

Given the number of records in most data sets, it is infeasible to approximate the function 

y=f(x) by summarizing y in each distinct region of x. For some variables, two regions may not 

be enough to track the specifics of the function. If the relationship of y to some x's is different 

in 3 or 4 regions, for example, the number of regions requiring examination is even larger than 

34 billion with only 35 variables. Given that the number of regions cannot be specified a priori, 

specifying too few regions in advance can have serious implications for the final model. A 

solution is needed that accomplishes the following two criteria:  



  

Figure 2. MARS Data Estimation Using Spines and Knots (actual data on the right) 

• judicious selection of which regions to look at and their boundaries 

• judicious determination of how many intervals are needed for each variable 

Given these two criteria, a successful method will essentially need to be adaptive to the 

characteristics of the data. Such a solution will probably ignore quite a few variables (affecting 

variable selection) and will take into account only a few variables at a time (also reducing the 

number of regions). Even if the method selects 30 variables for the model, it will not look at all 

30 simultaneously. Such simplification is accomplished by a decision tree at a single node, only 

ancestor splits are being considered; thus, at a depth of six levels in the tree, only six variables 

are being used to define the node. 

4.3.1 MARS Smoothing, Splines, Knots Selection and Basis Functions 

To estimate the most common form, the cubic spline, a uniform grid is placed on the predictors 

and a reasonable number of knots are selected. A cubic regression is then fit within each region. 

This approach, popular with physicists and engineers who want continuous second derivatives, 

requires many coefficients (four per region) to be estimated. Normally, two constraints, which 

dramatically reduce the number of free parameters, can be placed on cubic splines: 

• curve segments must join, 

• continuous first and second derivatives at knots (higher degree of smoothness) 

Figure 2 depicts a MARS spline with three knots. A key concept underlying the spline is the 

knot. A knot marks the end of one region of data and the beginning of another. Thus, the knot is 

where the behavior of the function changes. Between knots, the model could be global (e.g., 

linear regression). In a classical spline, the knots are predetermined and evenly spaced, whereas 

in MARS, the knots are determined by a search procedure. Only as many knots as needed are 

included in a MARS model. If a straight line is a good fit, there will be no interior knots. In 

MARS, however, there is always at least one "pseudo" knot that corresponds to the smallest 

observed value of the predictor [31]. Finding the one best knot in a simple regression is a 

straightforward search problem: simply examine a large number of potential knots and choose 

the one with the best R
2
. However, finding the best pair of knots requires far more computation, 

and finding the best set of knots when the actual number needed is unknown is an even more 

challenging task. MARS finds the location and number of needed knots in a forward/backward 

stepwise fashion. A model which is clearly over fit with too many knots is generated first; then, 

those knots that contribute least to the overall fit are removed. Thus, the forward knot selection 

will include many incorrect knot locations, but these erroneous knots will eventually (although 

this is not guaranteed), be deleted from the model in the backwards pruning step. 



4.4 Linear Genetic Programs (LGPs) 

Linear genetic programming is a variant of the GP technique that acts on linear genomes 

[15,16]. Its main characteristics in comparison to tree-based GP lies in that the evolvable units 

are not the expressions of a functional programming language (like LISP), but the programs of 

an imperative language (like C/C ++). An alternate approach is to evolve a computer program 

at the machine code level, using lower level representations for the individuals. This can 

tremendously hasten up the evolution process as, no matter how an individual is initially 

represented, finally it always has to be represented as a piece of machine code, as fitness 

evaluation requires physical execution of the individuals. The basic unit of evolution is a native 

machine code instruction that runs on the floating-point processor unit (FPU). Since different 

instructions may have different sizes, here instructions are clubbed up together to form 

instruction blocks of 32 bits each. The instruction blocks hold one or more native machine code 

instructions, depending on the sizes of the instructions. A crossover point can occur only 

between instructions and is prohibited from occurring within an instruction. However the 

mutation operation does not have any such restriction. 

4.5 Computational Intelligent Agents (CIA) Based Architecture 

The CIA based architecture for detecting computer attacks consists of several modules that will 

be executed by the agents in a distributed manner. Communication among the agents is done 

utilizing the TCP/IP sockets. Agent modules running on the host computers consist of data 

collection agents, data analysis agents, and response agents. Agents running on the secure 

devices consist of the agent control modules that include agent regeneration, agent dispatch, 

maintaining intrusion signatures and information of the features and feature ranking algorithms 

that help identify the intrusions. 

 

Figure 3: Computational Intelligent Agents Architecture 

Host Agents: Reside on the hosts of the internal network and perform the tasks 

specified by the master agent. These agents are implemented to be read only and fragile. In the 

event of tampering or modification the agent reports to the server agent and automatically ends 

its life.  

 



 

 

 

 

 

 

          

Figure 4: Functionality of Host Based Agents 

Server Agents: Reside on the secure server of the network. Controls the individual 

host agents for monitoring the network and manages communication between the agents if 

necessary. These agents manage the life cycle and also update the host agents with new 

detection, feature extraction, response and trace mechanisms. 

 

 

 

 

 

 

 

 

 

Figure 5: Functionality of Server Agents 

Advantages of the proposed model: 

� With prior knowledge of the device and user profiles of the network, specific agents can be 

designed and implemented in a distributed fashion 

� Highly optimized parallel algorithms can be designed and implemented independently for 

data collection agents, data analysis agents, and response agents 

� Analysis for computationally limited devices can be offloaded to cooperating systems and 

run in parallel to provide capabilities not otherwise available on such devices 

� Attack-specific agents can be implemented and dispatched to respond to specific new 

threats 

� Efficient detection algorithms can be implemented with less overhead 
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� Rapid intrusion response and trace back can be performed more easily with the agents 

communicating with each other 

� Adjustable detection thresholds can be implemented 

5 Experiments  

(Write a bit more about the data) 
In our experiments, we perform 5-class classification. The (training and testing) data set 

contains 11982 randomly generated points from the five classes, with the number of data from 

each class proportional to its size, except that the smallest class is completely included. The 

normal data belongs to class1, probe belongs to class 2, denial of service belongs to class 3, 

user to super user belongs to class 4, remote to local belongs to class 5. A different randomly 

selected set of 6890 points of the total data set (11982) is used for testing different intelligent 

techniques. 

5.1 Experiments Using Neural Networks 

The same data set describe in section 2 is being used for training and testing different neural 

network algorithms. The set of 5092 training data is divided in to five classes: normal, probe, 

denial of service attacks, user to super user and remote to local attacks. Where the attack is a 

collection of 22 different types of instances that belong to the four classes described in section 

2, and the other is the normal data. In our study we used two hidden layers with 20 and 30 

neurons each and the networks were trained using RP, SCG and OSS algorithms.   

The network was set to train until the desired mean square error of 0.001 was met. During the 

training process the goal was met at 303 epochs for SCG, 66 epochs for RP and 638 epochs for 

OSS. 

As multi-layer feed forward networks are capable of multi-class classifications, we partition the 

data into 5 classes (Normal, Probe, Denial of Service, and User to Root and Remote to Local). 

SCG performed with an accuracy of 95.25%; network using RP achieved an accuracy of 

97.04%; network using OSS performed with an accuracy of 93.60%.  

Table 5 Performance of the Best Neural Network Training Algorithm (RP) 

 Normal Probe DoS U2Su R2L % 

Normal 1394 5 1 0 0 99.6 

Probe 49 649 2 0 0 92.7 

DoS 3 101 4096 2 0 97.5 

U2Su 0 1 8 12 4 48.0 

R2L 0 1 6 21 535 95.0 

% 96.4 85.7 99.6 34.3 99.3  

 

The top-left entry of Table 6 shows that 1394 of the actual “normal” test set were detected to be 

normal; the last column indicates that 99.6 % of the actual “normal” data points were detected 

correctly. In the same way, for “Probe” 649 of the actual “attack” test set were correctly 

detected; the last column indicates that 92.7% of the actual “Probe” data points were detected 



correctly. The bottom row shows that 96.4% of the test set said to be “normal” indeed were 

“normal” and 85.7% of the test set classified, as “probe” indeed belongs to Probe. The overall 

accuracy of the classification is 97.04 with a false positive rate of 2.76% and false negative rate 

of 0.20 %. 

5.2 Experiments Using Support Vector Machines 

The data set described in section 4 is being used to test the performance of support vector 

machines. Note the same training test (5092) used for training the neural networks and the same 

testing test (6890) used for testing the neural networks are being used to validate the 

performance. Because SVMs are only capable of binary classifications, we will need to employ 

five SVMs, for the 5-class classification problem in intrusion detection, respectively. We 

partition the data into the two classes of “Normal” and “Rest” (Probe, DoS, U2Su, R2L) 

patterns, where the Rest is the collection of four classes of attack instances in the data set. The 

objective is to separate normal and attack patterns. We repeat this process for all classes. 

Training is done using the RBF (radial bias function) kernel option; an important point of the 

kernel function is that it defines the feature space in which the training set examples will be 

classified. Table 6 summarizes the results of the experiments. 

5.3 Experiments Using MARS 

We use 5 basis functions and selected a setting of minimum observation between knots as 10. 

The MARS training mode is being set to the lowest level to gain higher accuracy rates. Five 

MARS models are employed to perform five class classifications (normal, probe, denial of 

service, user to root and remote to local). We partition the data into the two classes of “Normal” 

and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the collection of four classes 

of attack instances in the data set. The objective is to separate normal and attack patterns. We 

repeat this process for all classes. Table 6 summarizes the results of MARS. 

5.4 Experiments Using LGPs 

LGP manipulates and evolves program at the machine code level [5]. The settings of various 

LGP parameters are of utmost importance for successful performance of the system. This 

section discusses the different parameter settings used for the experiment, justification of the 

choices and the significances of these parameters. The population space has been subdivided 

into multiple subpopulation or demes. Migration of individuals among the subpopulations 

causes evolution of the entire population. It helps to maintain diversity in the population, as 

migration is restricted among the demes. Moreover, the tendency towards a bad local minimum 

in one deme can be countered by other demes with better search directions. The various LGP 

search parameters are the mutation frequency, crossover frequency and the reproduction 

frequency: The crossover operator acts by exchanging sequences of instructions between two 

tournament winners. A constant crossover rate of 90% has been used for all the simulations. 

Five LGP models are employed to perform five class classifications (normal, probe, denial of 

service, user to root and remote to local). We partition the data into the two classes of “Normal” 

and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the collection of four classes 

of attack instances in the data set. The objective is to separate normal and attack patterns. We 

repeat this process for all classes. Table 6 summarizes the results of the experiments using 

LGPs. 

Table 6 Performance Comparison of Testing for 5 class Classifications  



Class % Accuracy 

 RP SVM MARS LGP 

Normal 99.57 98.42 99.71 99.71 

Probe 92.71 98.57 56.42 99.86 

DoS 97.47 99.45 96 99.90 

U2Su 48.00 64.00 40.00 64 

R2L 95.73 97.33 98.75 99.47 

Overall 97.09 98.85 92.75 99.73 

5.5 Experiments Using CIAs 

Experiments are performed on a real network using two clients and the server that serves the 

computer science network. The clients had CIA installed on them to identify or detect probes 

that are targeted to the server we are protecting. Our primary goal in these experiments is to 

detect probes targeting the server we are trying to protect. Our network parser gives the 

summary of each connection made from a host to the server and constructs a feature set to input 

into a classifier for classification. The output form a classifier is either normal or probe for each 

connection. Nmap an open source tool is used to collect probe data. Probing is a class of attacks 

where an attacker scans a network to gather information or find known vulnerabilities. An 

attacker with a map of machines and services that are available on a network can use the 

information to look for exploits. There are different types of probes: some of them abuse the 

computer’s legitimate features; some of them use social engineering techniques. This class of 

attacks is the most commonly heard and requires very little technical expertise. Nmap is 

installed on the clients that have CIA installed. A variety of probes SYN stealth, FIN stealth, 

ping sweep, UDP scan, null scan, xmas tree, IP scan, idle scan, ACK scan, window scan, RCP 

scan, and list scan with several options are targeted at the server. Normal data included multiple 

sessions of ftp, telnet, SSH, http, SMTP, pop3 and imap. Network data originating form a host 

to the server that included both normal and probes is collected for analysis; for proper labeling 

of data for training the classifiers normal data and probe data are collected at different times.  

55.1 CIA System and Implementation 

Computer probes that are intended to discover information of a computer system can be 

detected by careful observation of network packets. Probing tools in an effort to identify host 

information send connection requests to closed ports and non-existing systems. Knowledge of 

how a network and its hosts are being used will help in distinguishing between normal activity 

and probes. 

The primary goal of CIA is to detect probes at the host level. Our system is integrated with 

three major components: a network data parser, data classifier and a response mechanism. 

Network data parser we developed uses the WINPCAP library to capture network packets to 

extract the features required for classification. Output summary of the parser includes six 



features, duration of the connection to the target machine, the protocol used, the service, 

number of source bytes, and number of destination bytes. Feature set for our experiments is 

chosen based on our feature ranking results obtained using the DARPA intrusion detection 

evaluation data [17].  Network Parser reformats the extracted features to input a classifier to 

detect probes among other normal network packets. Once the feature set is being constructed it 

is fed into a suite of classifiers. Classifiers used in our experiments are SVMs, MARS and LGP. 

Output from the classifier is the classification of the connection into normal activity or probe. If 

a connection is classified as probe a classifier sends a message to the server using TCP/IP 

sockets and the boundary controllers are updated for necessary response with human 

intervention to block malicious activity. Table 7 summarizes the results of CIAs using different 

classifiers to detect stealthy probes. 

                                                

 

 

 

 

 

 

Figure 6. CIA Prototype Implementation 

Table 7 Performance Comparison of Classifiers to Detect Probes Using CIAs  

Class % Accuracy 

 SVM MARS LGP 

Normal 99.75 99.12 100 

6 Significance of Input Features   

Feature selection and ranking [17,26] is an important issue in intrusion detection. Of the large 

number of features that can be monitored for intrusion detection purpose, which are truly 

useful, which are less significant, and which may be useless? The question is relevant because 

the elimination of useless features (the so-called audit trail reduction) enhances the accuracy of 

detection while speeding up the computation, thus improving the overall performance of an 

IDS. In cases where there are no useless features, by concentrating on the most important ones 

we may well improve the time performance of an IDS without affecting the accuracy of 

detection in statistically significant ways.  

The feature ranking and selection problem for intrusion detection is similar in nature to various 

engineering problems that are characterized by: 

Network Parser 

Classifier 

Response 



� Having a large number of input variables x = (x1, x2, …, xn) of varying degrees of importance 

to the output y; i.e., some elements of x are essential, some are less important, some of them 

may not be mutually independent, and some may be useless or irrelevant (in determining the 

value of y) 

� Lacking an analytical model that provides the basis for a mathematical formula that precisely 

describes the input-output relationship, y = F (x) 

� Having available a finite set of experimental data, based on which a model (e.g. neural 

networks) can be built for simulation and prediction purposes   

Due to the lack of an analytical model, one can only seek to determine the relative importance 

of the input variables through empirical methods. A complete analysis would require 

examination of all possibilities, e.g., taking two variables at a time to analyze their dependence 

or correlation, then taking three at a time, etc. This, however, is both infeasible (requiring 2
n
 

experiments!) and not infallible (since the available data may be of poor quality in sampling the 

whole input space). In the following, therefore, we apply the technique of deleting one feature 

at a time and support vector decision function to rank the input features and identify the most 

important ones for intrusion detection using SVMs. Table 8 summarizes the results of feature 

ranking experiments using PBRM and SVDF. 

6.1 Performance-Based Ranking Method (PBRM) 

We first describe a general (i.e., independent of the modeling tools being used), performance-

based input ranking methodology: One input feature is deleted from the data at a time; the 

resultant data set is then used for the training and testing of the classifier. Then the classifier’s 

performance is compared to that of the original classifier (based on all features) in terms of 

relevant performance criteria.  Finally, the importance of the feature is ranked according to a set 

of rules based on the performance comparison.    

The procedure is summarized as follows:  

1. compose the training set and the testing set; 

for each feature do the following 

2. delete the feature from the (training and testing) data; 

3. use the resultant data set to train the classifier; 

4. analyze the performance of the classifier using the test set, in terms of the selected 

performance criteria; 

5. rank the importance of the feature according to the rules; 

6.1.1 Performance Metrics 

To rank the importance of the 41 features (of the DARPA data) in an SVM-based IDS, we 

consider three main performance criteria: overall accuracy of (5-class) classification; training 

time; and testing time. Each feature will be ranked as “important”, “secondary”, or 

“insignificant”, according to the following rules that are applied to the result of performance 

comparison of the original 41-feature SVM and the 40-feature SVM: 

1. If accuracy decreases and training time increases and testing time decreases, then the 

feature is important 
2. If accuracy decreases and training time increases and testing time increases, then the 

feature is important 
3. If accuracy decreases and training time decreases and testing time increases, then the 

feature is important 



4. If accuracy unchanges and training time increases and testing time increases, then the 

feature is important 
5. If accuracy unchanges and training time decreases and testing time increases, then 

the feature is secondary 

6. If accuracy unchanges and training time increases and testing time decreases, then 

the feature is secondary 

7. If accuracy unchanges and training time decreases and testing time decreases, then 

the feature is unimportant 
8. If accuracy increases and training time increases and testing time decreases, then the 

feature is secondary 

9. If accuracy increases and training time decreases and testing time increases, then the 

feature is secondary 

10. If accuracy increases and training time decreases and testing time decreases, then the 

feature is unimportant 

6.2 SVM-specific Feature Ranking Method 

Information about the features and their contribution towards classification is hidden in the 

support vector decision function. Using this information one can rank their significance, i.e., in 

the equation 

F (X) = ΣWiXi + b 

The point X belongs to the positive class if F(X) is a positive value. The point X belongs to the 

negative class if F(X) is negative. The value of F(X) depends on the contribution of each value 

of  X and Wi. The absolute value of Wi measures the strength of the classification. If Wi is a 

large positive value then the i
th
 feature is a key factor for positive class. If Wi is a large negative 

value then the i
th
 feature is a key factor for negative class. If Wi is a value close to zero on 

either the positive or the negative side, then the i
th
 feature does not contribute significantly to 

the classification. Based on this idea, a ranking can be done by considering the support vector 

decision function. 

6.2.2 Support Vector Decision Function Ranking Method (SVDFRM) 

The input ranking is done as follows: First the original data set is used for the training of the 

classifier. Then the classifier’s decision function is used to rank the importance of the features. 

The procedure is:  

1. Calculate the weights from the support vector decision function; 

2. Rank the importance of the features by the absolute values of the weights; 

Table 8 Performance of SVMs Using Important Features 

Class 
No of Features 

Identified 

Training 

Time (sec) 

Testing 

Time (sec) 
Accuracy (%) 

 PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM 

Normal 25 20 9.36 4.58 1.07 0.78 99.59 99.55 

Probe 7 11 37.71 40.56 1.87 1.20 99.38 99.36 

DOS 19 11 22.79 18.93 1.84 1.00 99.22 99.16 



U2Su 8 10 2.56 1.46 0.85 0.70 99.87 99.87 

R2L 6 6 8.76 6.79 0.73 0.72 99.78 99.72 

7 Summary and Conclusions 

Current IDS testing techniques to data are becoming increasingly complex. There are no 

standard testing standards that can quantify the performance of IDS in terms scalability, data 

handling rate, time to detect an attack, etc. Current IDS heavily rely on unencrypted audit trails 

and if the data is encrypted this might hinder the performance or even the IDS might be come 

absolute in terms of detecting intrusions. Our research has clearly shown the importance of 

using distributed computational intelligent agent approach for modeling intrusion detection 

systems.  

� SVMs outperform MARS and ANNs in the important respects of scalability (SVMs can 

train with a larger number of patterns, while would ANNs take a long time to train or fail to 

converge at all when the number of patterns gets large); training time and running time 

(SVMs run an order of magnitude faster); and prediction accuracy. 

� Resilient back propagation achieved the best performance among the neural networks in 

terms of accuracy (97.04 %) and training (67 epochs).  

� LGPs outperform SVMs and RBP in terms of detection accuracies with the expense of time 

Regarding feature ranking, we observe that 

� The two feature ranking methods produce largely consistent results: except for the class 1 

(Normal) and class 4 (U2Su) data, the features ranked as Important by the two methods 

heavily overlap. 

� The most important features for the two classes of ‘Normal’ and ‘DOS’ heavily overlap. 

� ‘U2Su’ and ‘R2L’, the two smallest classes representing the most serious attacks, each has 

a small number of important features and a large number of secondary features. 

� The performances of (a) using the important features for each class, Table 2, (b) using the 

union of important features, Table 4 and Table 5, and (c) using the union of important and 

secondary features for each class, Table 3, do not show significant differences, and are all 

similar to that of using all 41 features. 

� Using the important features for each class gives the most remarkable performance: the 

testing time decreases in each class; the accuracy increases slightly for one class ‘Normal’, 

decreases slightly for two classes ‘Probe’ and ‘DOS’, and remains the same for the two 

most serious attack classes. 
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