
MEPIDS: Multi-Expression Programming for
Intrusion Detection System

Crina Groşan*, Ajith Abraham and Sang Yong Han

*Department of Computer Science
Babeş-Bolyai University, Kogălniceanu 1

Cluj-Napoca, 3400, Romania
School of Computer Science and Engineering
Chung-Ang University, Seoul, South Korea

cgrosan@cs.ubbcluj.ro, ajith.abraham@ieee.org, hansy@cau.ac.kr

Abstract. An Intrusion Detection System (IDS) is a program that an-
alyzes what happens or has happened during an execution and tries to
find indications that the computer has been misused. An IDS does not
eliminate the use of preventive mechanism but it works as the last defen-
sive mechanism in securing the system. This paper evaluates the perfor-
mances of Multi-Expression Programming (MEP) to detect intrusions in
a network. Results are then compared with Linear Genetic Programming
(LGP) approach. Empirical results clearly show that genetic program-
ming could play an important role in designing light weight, real time
intrusion detection systems.

1 Introduction

An intrusion is defined as any set of actions that attempt to compromise the
integrity, confidentiality or availability of a resource. Intrusion detection is clas-
sified into two types: misuse intrusion detection and anomaly intrusion detection
[13]. Misuse intrusion detection uses well-defined patterns of the attack that ex-
ploit weaknesses in system and application software to identify the intrusions.
These patterns are encoded in advance and used to match against the user be-
havior to detect intrusion. Anomaly intrusion detection uses the normal usage
behavior patterns to identify the intrusion. The normal usage patterns are con-
structed from the statistical measures of the system features. The behavior of
the user is observed and any deviation from the constructed normal behavior is
detected as intrusion [7], [15]. Data mining approaches for intrusion detection
were first implemented in mining audit data for automated models for intrusion
detection [2], [6], [9]. Several data mining algorithms are applied to audit data
to compute models that accurately capture the actual behavior of intrusions as
well as normal activities. Audit data analysis and mining combine the associ-
ation rules and classification algorithm to discover attacks in audit data. Soft
Computing (SC) is an innovative approach to construct computationally intel-
ligent systems consisting of artificial neural networks, fuzzy inference systems,

approximate reasoning and derivative free optimization methods such as evo-
lutionary computation etc. [14]. This paper compares a Genetic Programming
(GP) technique performance – Multi-Expression Programming (MEP) – with
Linear Genetic Programming (LGP) [3], Support Vector Machines (SVM) [16]
and Decision Trees (DT) [5]. Rest of the paper is organized as follows. Section
2 provides the technical details of MEP. In Section 3, a description of the intel-
ligent paradigms used in experiments is given. Experiment results are presented
in Section 4 and some conclusions are also provided towards the end.

2 Multi Expression Programming (MEP)

A GP chromosome generally encodes a single expression (computer program). By
contrast, Multi Expression Programming (MEP)[11], [12] chromosome encodes
several expressions. The best of the encoded solution is chosen to represent the
chromosome (by supplying the fitness of the individual).

The MEP chromosome has some advantages over the single-expression chro-
mosome especially when the complexity of the target expression is not known.
This feature also acts as a provider of variable-length expressions. Other tech-
niques (such as Gramatical Evolution (GE) [14] or Linear Genetic Programming
(LGP) [4]) employ special genetic operators (which insert or remove chromosome
parts) to achieve such a complex functionality.

2.1 Solution Representation

MEP genes are (represented by) substrings of a variable length. The number
of genes per chromosome is constant. This number defines the length of the
chromosome. Each gene encodes a terminal or a function symbol. A gene that
encodes a function includes pointers towards the function arguments. Function
arguments always have indices of lower values than the position of the function
itself in the chromosome.

The proposed representation ensures that no cycle arises while the chro-
mosome is decoded (phenotypically transcripted). According to the proposed
representation scheme, the first symbol of the chromosome must be a terminal
symbol. In this way, only syntactically correct programs (MEP individuals) are
obtained.

An example of chromosome using the sets F= {+, *} and T= {a, b, c, d} is
given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

The maximum number of symbols in MEP chromosome is given by the for-
mula:

Number of Symbols = (n+1) * (Number of Genes – 1) + 1,
where n is the number of arguments of the function with the greatest number of
arguments.

The maximum number of effective symbols is achieved when each gene (ex-
cepting the first one) encodes a function symbol with the highest number of
arguments. The minimum number of effective symbols is equal to the number of
genes and it is achieved when all genes encode terminal symbols only.

The translation of a MEP chromosome into a computer program represents
the phenotypic transcription of the MEP chromosomes. Phenotypic translation
is obtained by parsing the chromosome top-down. A terminal symbol specifies
a simple expression. A function symbol specifies a complex expression obtained
by connecting the operands specified by the argument positions with the current
function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple
expressions formed by a single terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,
Gene 3 indicates the operation + on the operands located at positions 1

and 2 of the chromosome. Therefore gene 3 encodes the expression: E3 = a
+ b. Gene 6 indicates the operation + on the operands located at positions 4
and 5. Therefore gene 6 encodes the expression: E6 = c + d. Gene 7 indicates
the operation * on the operands located at position 3 and 6. Therefore gene 7
encodes the expression: E7 = (a + b) * (c + d). E7 is the expression encoded by
the whole chromosome.

There is neither practical nor theoretical evidence that one of these expres-
sions is better than the others. This is why each MEP chromosome is allowed
to encode a number of expressions equal to the chromosome length (number of
genes). The chromosome described above encodes the following expressions:

E1 = a,
E2 = b,
E3 = a + b,
E4 = c,
E5 = d,
E6 = c + d,
E7 = (a + b) * (c + d).
The value of these expressions may be computed by reading the chromosome

top down. Partial results are computed by dynamic programming and are stored
in a conventional manner.

Due to its multi expression representation, each MEP chromosome may be
viewed as a forest of trees rather than as a single tree, which is the case of
Genetic Programming.

2.2 Fitness assignment

As MEP chromosome encodes more than one problem solution, it is interesting
to see how the fitness is assigned.

The chromosome fitness is usually defined as the fitness of the best expression
encoded by that chromosome.

For instance, if we want to solve symbolic regression problems, the fitness of
each sub-expression Ei may be computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|,

where ok,i is the result obtained by the expression Ei for the fitness case k and
wk is the targeted result for the fitness case k. In this case the fitness needs to
be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in the chromosome:

When we have to deal with other problems, we compute the fitness of each
sub-expression encoded in the MEP chromosome. Thus, the fitness of the en-
tire individual is supplied by the fitness of the best expression encoded in that
chromosome.

3 Intelligent Paradigms

3.1 Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP technique that acts on linear
genomes [4]. Its main characteristics in comparison to tree-based GP lies in that
the evolvable units are not the expressions of a functional programming language
(like LISP), but the programs of an imperative language (like c/c ++). An alter-
nate approach is to evolve a computer program at the machine code level, using
lower level representations for the individuals. This can tremendously hasten the
evolution process as, no matter how an individual is initially represented, finally
it always has to be represented as a piece of machine code, as fitness evaluation
requires physical execution of the individuals.

3.2 Support Vector Machines

Support Vector Machines [16] have been proposed as a novel technique for in-
trusion detection. A Support Vector Machine (SVM) maps input (real-valued)
feature vectors into a higher dimensional feature space through some nonlinear
mapping. These are developed on the principle of structural risk minimization.
SVM uses a feature called kernel to solve this problem. Kernel transforms linear
algorithms into nonlinear ones via a map into feature spaces.

3.3 Decision Trees

Decision tree induction is one of the classification algorithms in data mining [5].
Each data item is defined by values of the attributes. The Decision tree classifies
the given data item using the values of its attributes. The main approach is
to select the attributes, which best divides the data items into their classes.
According to the values of these attributes the data items are partitioned. This
process is recursively applied to each partitioned subset of the data items. The
process terminates when all the data items in current subset belongs to the same
class.

4 Experiment Setup and Results

The data for our experiments was prepared by the 1998 DARPA intrusion detec-
tion evaluation program by MIT Lincoln Labs [10]. The data set has 41 attributes
for each connection record plus one class label as given in Table 1. The data set
contains 24 attack types that could be classified into four main categories Attack
types fall into four main categories:

DoS: Denial of Service
Denial of Service (DoS) is a class of attack where an attacker makes a com-

puting or memory resource too busy or too full to handle legitimate requests,
thus denying legitimate users access to a machine.

R2L: Unauthorized Access from a Remote Machine
A remote to user (R2L) attack is a class of attack where an attacker sends

packets to a machine over a network, then exploits the machine’s vulnerability
to illegally gain local access as a user.

U2Su: Unauthorized Access to Local Super User (root)
User to root (U2Su) exploits are a class of attacks where an attacker starts

out with access to a normal user account on the system and is able to exploit
vulnerability to gain root access to the system.

Probing: Surveillance and Other Probing
Probing is a class of attack where an attacker scans a network to gather

information or find known vulnerabilities. An attacker with a map of machines
and services that are available on a network can use the information to look for
exploits.

Our experiments have two phases namely training and testing phases. In
the training phase, MEP models were constructed using the training data to
give maximum generalization accuracy on the unseen data. The test data is
then passed through the saved trained model to detect intrusions in the testing
phase. The 41 features are labeled as shown in Table 1 and the class label is
named as AP.

This data set has five different attack types (classes) namely Normal, DoS,
R2L, U2R and Probes. The training and test data comprises of 5,092 and 6,890
records respectively [8]. All the training data were scaled to (0-1). Using the
data set, we performed a 5-class classification.

Table 1. Variables for intrusion detection data set

Variable No. Variable name Variable type Variable label

1 duration continuous A
2 protocol type discrete B
3 service discrete C
4 flag discrete D
5 src bytes continuous E
6 dst bytes continuous F
7 land discrete G
8 wrong fragment continuous H
9 urgent continuous I
10 hot continuous J
11 num failed logins continuous K
12 logged in discrete L
13 num compromised continuous M
14 root shell continuous N
15 su attempted continuous O
16 num root continuous P
17 num file creations continuous Q
18 num shells continuous R
19 num access files continuous S
20 num outbound cmds continuous T
21 is host login discrete U
22 is guest login discrete V
23 count continuous W
24 srv count continuous X
25 serror rate continuous Y
26 srv serror rate continuous X
27 rerror rate continuous AA
28 srv rerror rate continuous AB
29 same srv rate continuous AC
30 diff srv rate continuous AD
31 srv diff host rate continuous AE
32 dst host count continuous AF
33 dst host srv count continuous AG
34 dst host same srv rate continuous AH
35 dst host diff srv rate continuous AI
36 dst host same src port rate continuous AJ
37 dst host srv diff host rate continuous AK
38 dst host serror rate continuous AL
39 dst host srv serror rate continuous AM
40 dst host rerror rate continuous AN
41 dst host srv rerror rate continuous AO

The settings of various linear genetic programming system parameters are
of utmost importance for successful performance of the system [1]. The popu-
lation size was set at 120,000 and a tournament size of 8 is used for all the 5
classes. Crossover and mutation probability is set at 65-75% and 75-86% respec-
tively for the different classes. Our trial experiments with SVM revealed that
the polynomial kernel option often performs well on most of the datasets. We
also constructed decision trees using the training data and then testing data was
passed through the constructed classifier to classify the attacks [13]. Parameters
used by MEP are presented in Table 2. We made use of +, - , *, /, sin, cos, sqrt,
ln, lg, log2, min, max, and abs as function sets.

Table 2. Parameters used by MEP

Attack type
Parameter value
Pop. Size Generations Crossover

(%)
No. of
mutations

Chromosome
length

Normal 100 100 0.9 3 30

Probe 200 200 0.9 4 40

DOS 500 200 0.8 5 40

U2R 20 100 0.9 3 30

R2L 800 200 0.9 4 40

Table 3. Performance comparison

Attack type
Classification accuracy on test data set (%)
MEP DT SVM LGP

Normal 99.82 99.64 99.64 99.73
Probe 95.52 99.86 98.57 99.89
DOS 98.91 96.83 99.92 99.95
U2R 99.75 68.00 40.00 64.00
R2L 99.72 84.19 33.92 99.47

In Table 4 the variable combinations evolved by MEP are presented. Results
presented in Table 3 are based on these evolved functions.

As evident from Table 3, MEP gives the best results for detecting Normal
patterns, U2R and R2L attacks. While DT, SVM and LGP did not perform well
U2R attacks, MEP obtained the best results for this class (99.76% accuracy).
Results for MEP presented in this table are obtained by applying the test data
using the training function which gave the best results during training.

In Figure 1, the classification accuracy for the best results obtained for train-
ing data, results obtained for the test data using the best training function and

Fig. 1. Evolutionary learning of the different attack types

Table 4. MEP evolved functions for the attack classes

Attack type Evolved Function

Normal var12 * log2(var10 + var3)

Probe (log2(var2) < (fabs((var36 * var27) > (var27 + var35 –
var34) ? (var35 * var27) : (var27 + var35 – var34))) ?
(log2(var2)) : (fabs((var36 * var27) > (var27 + var35 –
var34) ? (var36 * var27) : (var27 + var35 – var34)));

DOS 0.457∗(var8+(ln(var6))∗(lg(var41))−−var40+var23+
var8)

U2R sin(var14) −−var33

R2L 0.36 + (var11 < 0.086 ? var11 : 0.086 + 0.086) > (var6
> (log2(log2(var12 * var3))) ? var6 : (log2(log2(var12 *
var3)))) ? (var11 < 0.086 ? var11 : 0.086 + 0.086) : (var6
> (log2(log2(var12 * var3))) ? var6 : (log2(log2(var12 *
var3)))) + var6

the best results obtained for the test data are depicted. Figure 1 (a) corresponds
to Normal patterns, Figure 1 (b) corresponds to Probe, Figure 1 (c) corresponds
to DOS Figure 1 (d) corresponds to U2R and Figure 1 (e) corresponds to R2L
respectively.

In some classes the accuracy figures tend to be very small and may not be
statistically significant, especially in view of the fact that the 5 classes of patterns
differ in their sizes tremendously. For example only 27 data sets were available
for training the U2R class. More definitive conclusions can only be made after
analyzing more comprehensive sets of network traffic.

5 Conclusions

In this paper, we have illustrated the importance of genetic programming based
techniques for modeling intrusion detection systems. MEP outperforms LGP for
three of the considered classes and LGP outperform MEP for two of the classes.
MEP classification accuracy is grater than 95% for all considered classes and for
four of them is greater than 99.65%. It is to be noted that for real time intrusion
detection systems MEP and LGP would be the ideal candidates because of its
simplified implementation.

6 Acknowledgements

This research was supported by the MIC (Ministry of Information and Commu-
nication), Korea, under the Chung-Ang University HNRC-ITRC (Home Network

Research Center) support program supervised by the IITA (Institute of Infor-
mation Technology Assessment).

References

1. Abraham A., Evolutionary Computation in Intelligent Web Management, Evolu-
tionary Computing in Data Mining, Ghosh A. and Jain L.C. (Eds.), Studies in
Fuzziness and Soft Computing, Springer Verlag Germany, Chapter 8, pp. 189-210,
2004.

2. Barbara D., Couto J., Jajodia S. and Wu N., ADAM: A Testbed for Exploring the
Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4), pp. 15-24,
2001.

3. Brameier. M. and Banzhaf. W., A comparison of linear genetic programming and
neural networks in medical data mining,Evolutionary Computation,” IEEE Trans-
actions on, Volume: 5(1), pp. 17-26, 2001.

4. Brameier M. and Banzhaf W, Explicit control of diversity and effective variation
distance in Linear Genetic Programming. In Proceedings of the fourth European
Conference on Genetic Programming, Springer-Verlag Berlin, 2001.

5. Brieman L., Friedman J., Olshen R., and Stone C., Classification of Regression
Trees. Wadsworth Inc., 1984.

6. Cohen W., Learning Trees and Rules with Set-Valued Features, American Associ-
ation for Artificial Intelligence (AAAI), 1996.

7. Denning D., An Intrusion-Detection Model, IEEE Transactions on Software Engi-
neering, Vol. SE-13, No. 2, pp.222-232, 1987.

8. KDD Cup 1999 Intrusion detection data set:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data 10 percent.gz

9. Lee W. and Stolfo S. and Mok K., A Data Mining Framework for Building Intrusion
Detection Models. In Proceedings of the IEEE Symposium on Security and Privacy,
1999.

10. MIT Lincoln Laboratory. http://www.ll.mit.edu/IST/ideval/
11. Oltean M. and Grosan C., A Comparison of Several Linear GP Techniques, Com-

plex Systems, Vol. 14, No. 4, pp. 285-313, 2004.
12. Oltean M. and Grosan C., Evolving Evolutionary Algorithms using Multi Expres-

sion Programming. Proceedings of The 7th European Conference on Artificial Life,
Dortmund, Germany, pp. 651-658, 2003.

13. Peddabachigari S., Abraham A., Thomas J., Intrusion Detection Systems Using
Decision Trees and Support Vector Machines, International Journal of Applied
Science and Computations, USA, Vol.11, No.3, pp.118-134, 2004.

14. Ryan C. et al, 1998. Gramatical Evolution:Evolving programs for an arbitrary
language. In Proceedings of the first European Workshop on Genetic Programming,
Springer-Verlag, Berlin

15. Summers R.C., Secure Computing: Threats and Safeguards. McGraw Hill, New
York, 1997.

16. Vapnik V.N., The Nature of Statistical Learning Theory. Springer, 1995.

