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Abstract: Fuzzy logic, neural network, fuzzy-neural networks play an important
role in the linguistic modeling of intelligent control and decision making in complex
systems. The Fuzzy-Neural Network (FNN) learning represents one of the most ef-
fective algorithms to build such linguistic models. This paper proposes an Artificial
Immune Algorithm (AIA) based optimal learning fuzzy-neural network (IM-FNN).
The proposed learning scheme includes the discovery of the fuzzy-neural network
structure which can handle linguistic knowledge and the tuning of the membership
function of the fuzzy inference system is achieved by AIA. The learning algorithm
of the IM-FNN is composed of two phases. The first phase is to find the initial
membership functions of the fuzzy neural network model. In the second phase,
immune algorithm is used for tuning the membership functions of the proposed
model. This paper also suggests techniques in determining the values of the steady-
state equivalent circuit parameters of a three-phase squirrel-cage induction machine
using immune algorithm.
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1. Introduction

Some researchers suggest a model of fuzzy neuron that linear synaptic connec-
tions can be replaced with a nonlinearity characterized by a membership function
and a fuzzy neural network model [1, 2]. The nonlinear characteristics are basi-
cally represented by fuzzy if-then rules with complementary membership functions.
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Since fuzzy-neuron model or fuzzy-neural network possess good ability to describe
a nonlinear relationship between multi-inputs and multi-output as well as its short
leaning time compared with a conventional neural network, these models are ex-
pected as future linguistic tools for soft computing [11, 15, 16]. On the other hand,
Radial Basis Function Networks (RBFN) and Backpropagation Neural Networks
(BPNN) have yielded useful results in many practical areas such as pattern recogni-
tion, system identification and control, primarily due to their simple structures for
realization and well established training algorithms [18]. Many fuzzy paradigms,
meanwhile, have been studied is recent years by viewing a Fuzzy Logic System
(FLS) as functionally equivalent to a RBFN or BPNN [17]. The most important
advantage of such an FLS spanned by fuzzy basic functions is the provision of
a natural framework for combining numerical values and linguistic symbols in a
uniform way [3, 4]. From a mathematical point of view, the input-output expres-
sions of those mappings are identical in spite of the distinct inference procedure.
Capability discrimination between the neural and fuzzy system is thus diminished
for proofs of universal neural/fuzzy approximators. Using neural networks or fuzzy
systems to approximate a given plant or to control a process flow depends on
whether rich available data are at hand or whether the if-then control heuristics
could be established by human experts familiar with the system dynamics under
consideration. A simple sigmoidal-like neuron is employed as a pre-assigned al-
gorithm of the law of structural change which is directed by the current value of
the error signal. However, in case of almost fuzzy logic systems and fuzzy-neural
networks, the grade of the membership and the weighting function must be tuned
by an approximation method or the experience-based tuning method. Some papers
are written with a couple of objectives to demonstrate that the Genetic Algorithm
(GA) is an efficient and the robust tool for generating fuzzy rules and the weighting
function. The GA can construct a set of fuzzy rules that could optimize multiple
criteria [5]. This paper proposes an artificial immune system [6, 7] based on optimal
learning approach for designing fuzzy-neural [8-10, 14] network. The first phase of
the IM-FNN is to find the initial membership functions of the fuzzy neural net-
work model and the second phase is to obtain optimal membership functions of
the proposed model by immune algorithm. This paper also deals with parameter
estimation of an induction motor using the proposed method.

2. Structure of an Immune Algorithm Based
Fuzzy-Neural Network

The structure of IM-FNN is illustrated in Fig. 1 [3] and the output of the FNN
part of IM-FNN can be represented by (1). As illustrated in (1), the input space
xi is divided into several fuzzy segments which are characterized by membership
functions µi1, µi2, ..., µin within the range between xmin and xmax. The grade
of membership function is also given as numbers assigned to labels of a fuzzy
membership function. The membership functions are followed by variable weights
wi1, . . . , win. Mapping from xi to fi(xi) is determined by fuzzy inference and fuzzy
rule as in (2).
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Fig. 1 The structure of immune algorithm based optimal learning fuzzy-neural
network.

y = f1(x1) + f2(x2) + ... + fm(xm)

=
m∑

i=1

fi(xi)
(1)

R1 : If xi is Ai1 then Cyx1 = wx1

•
•
•

Rn : If xi is Ain then Cyxn = wxn

(2)

As the fuzzy inference adopted here is that of a singleton consequent, each
weight wij is a deterministic value such as 0.8, 0.9. It should be emphasized that
each membership function in antecedent is triangular and assigned to be com-
plementary with neighboring ones. In other words, an input signal xi activates
only two membership functions simultaneously and the sum of grades of these two
neighboring membership functions labeled by k and k+1 is always equal to 1, that
is µi,k(xi) + µi,k+1(xi) = 1. So, the output of the fuzzy neural network can be
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represented as follows:

fi(xi) =
n∑

i=1

µxi • Cyxi

=

n∑
j=1

µij(xi)wij

n∑
j=1

µij(xi)
=

µik(xi)wik + µik+1(xi)wik+1

µik(xi) + µi, k+1(xi)

=
n∑

i=1

µxi·wxi

(3)

In (3), the weight wij is assigned by learning the rule which is described by n if-
then rules. That is, If input xi lies in the fuzzy segment µij , then the corresponding
weight wij should be increased directly proportional to the output error (y-y),
because the error is caused by the weight. This proposition can be represented as
follows:

fi(xi) = µxi(xi)wxi + µxi+1(xi)wxi+1 (4)

The learning procedure is an incremental change of weights for each input pat-
tern. That is, the incremental change of minimizing the squared error (4) is ob-
tained from:

∆wxi(t + 1) = 2δ (y − y)µxi + αi (wxi(t)− wxi(t− 1)) (5)

In this learning algorithm, all the initial weights are assigned to be zero and
the updating of the weights is achieved after calculation of cumulative value in (5),
where y is the given data, y is the output of model, δ learning rate, α is momentum
constant and δ, α have the range of 0 to 1, respectively. wxi is the present weighting
function and wxi(t− 1) is the previous weighting function.

3. Immune Algorithms for Obtaining Optimal
Learning of the FNN

3.1 Immune algorithm

An artificial immune system is illustrated in Fig. 2. When an antibody on the
surface of a B cell binds an antigen, B cell becomes stimulated. The level of
stimulation depends not only on how well the B cell’s antibody matches the antigen
but also how it matches other B cells in the immune network. The stimulation level
of the B cell also depends on its affinity with other B cells in the immune network.
This network is formed by B cells possessing an affinity to other B cells in the
system. If the stimulation level rises above a given threshold, the B cell becomes
enlarged and if the stimulation level falls below a given threshold, the B cell dies
off. The more neighbors a B cell has an affinity with, the more stimulation it will
receive from the network and vice versa. Against the antigen, the level to which a
B cell is stimulated relates partly to how well its antibody binds the antigen. We
take into account both the strength of the match between the antibody and the
antigen and the B cell object’s affinity to the other B cells as well as its enmity.
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Therefore, generally the concentration of i-th antibody, which is denoted by δi, is
calculated as follows [6-8]:

dSi(t)
dt

=




σ
N∑

j=1

mjiξj(t)

−σ
N∑

k=1

mikξk(t) + βmi − γi


 δi(t) (6a)

dσi(t)
dt

=
1

1 + exp
(
0.5− dSi(t)

dt

) (6b)

In (6), N is the number of antibodies, and σ and β are positive constants. mji

denotes affinities between antibody j and antibody i (i.e. the degree of interaction),
mi represents affinities between the detected antigens and antibody i, respectively.

Fig. 2 Dynamic relationship between cells and antigen in an immune system.

3.2 Immune based membership function tuning

The initial value of the membership function (triangular) is given by X1min= [0.46,
0.48], X1max= [0.77, 0.81], X2min = [45.0, 47.0] X2max= [61.0, 63.0], and learning
rate boundary δ = [0.001, 0.01] and momentum constant boundary α=[0.00001,
0.0004], respectively. The final membership function obtained by the immune al-
gorithm is illustrated as a dashed line in Figs. 3(a) and (b).

3.3 Immune algorithm based on computational procedure
for optimal selection of parameter of FNN structure

We used the immune algorithm based on calculation procedure as depicted in Fig. 4
to optimize the learning rate, momentum term and fuzzy membership function of
IM-FNN. We used 10 and 100 generations, 60 population size, 10 bits per string,
crossover rate equal to 0.6, and mutation probability equal to 0.1, respectively.
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Fig. 3 (a) Membership function shape of x1.

Fig. 3 (b) Membership function shape of x1.

[Step 1] Initialization and recognition of antigen: The immune system recognizes
the invasion of an antigen.

[Step 2] Product of antibody from the memory cell: The immune system produces
the antibodies that were effective to kill the antigen in the past. This is
implemented by recalling a past successful solution from memory cell. For
each individual of the network population, calculate the fitness function using
memory cell to membership function, learning rate and momentum constant.

[Step 3] Antibody with the best fitness value obtained by calculation for searching
an optimal solution is stored in memory cell.

[Step 4] Differentiation of lymphocyte: The B-lymphocyte cell, the antibody that
matched the antigen, is dispersed to the memory cells in order to respond to
the next invasion quickly. This is achieved by selecting individuals using tour-
nament selection and applying genetic operators (crossover and mutation) to
the individuals of network.
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[Step 5] Stimulation and suppression of antibody: The expected value ηk of the
stimulation of the antibody is given by:

ηk =
mϕk

σk
, (7)

where σk is the concentration of the antibodies.

An immune system can control the concentration and the variety of antibod-
ies in the lymphocyte population. If the antibody obtains a higher affinity
against an antigen, the antibody stimulates. However, an excessive higher
concentration of an antibody is suppressed. Through this function, an im-
mune system can maintain the diversity of search directions and obtain an
optimal solution.

[Step 6] Calculate fitness value between antibody and antigen. This procedure
can generate a diversity of antibodies by a genetic reproduction operator
such as mutation or crossover. These genetic operators are expected to be
more efficient than the generation of the antibodies.

[Step 7] If the maximum number of generations of the memory cell is reached,
stop and return the fitness of the best individual fitness value to network;
otherwise, go to Step 3.

4. Experiment Results and Discussions

4.1 Immune based optimal learning of FNN structure

In order to illustrate the learning effect of the proposed immune based FNN
(IM-FNN), we use the second-order nonlinear difference equation given as [4]

yk =
yk−1yk−2(yk−1 + 2.5)

1 + y2
k−1 + y2

k−2

+ uk (8)

Fig. 7 depicts the performance index by clonal differentiation rate of the immune
algorithm for the given model (8) and Figs. 8 and 9 illustrate the best fitness and
the object function depending on the differentiation rate of clonal selection pCS =
0.2 and clonal selection pCS = 0.5, respectively, when the number of Membership
Function (MF) is 2. Fig. 10 shows comparison of the fitness value depending on the
differentiation rate of clonal selection (pCS), when the number of the membership
function is 2 (mem = [2, 2]). Fig. 11 represents the best value of the fitness
function and object function, when the number of the membership function is 3
(mem = [3, 3]) and differentiation rate of clonal pCS = 0.2, respectively. Fig. 13
provided a comparison of the fitness value for pCS with respect to the number of the
membership function, 3. Figs. 14–16 illustrate the best fitness value when learning
parameter of the immune algorithm is 100 generations, 0.2, 0.5 pCS (differentiation
rate of the clonal selection), and the number of the membership function is varied
from 2 to 3. Figs. 17 and 18 illustrate the best fitness value when learning parameter
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Fig. 4 Computational procedure for parameter selection of FNN structure by clonal
selection of immune algorithm.
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Fig. 5 Equivalent circuit of a squirrel-double cage induction motor.

Fig. 6 Allocation structure of each parameter in the immune system.

pCS
2:2 3:2 3:3
PI E PI PI E PI PI E PI

0.2 0.0354 0.2857 0.0354 0.2857
0.3 0.0408 0.2729 0.0356 0.2855
0.4 0.0409 0.2726 0.0359 0.2852
0.5 0.0394 0.2742 0.0361 0.2847

Tab. I Parameters obtained by simulation.

of the immune algorithm is 100 generations and the number of the membership
function is varied from 2 to 3 and for different values of pCS.

Figs. 19–22 illustrate the Performance Index Error (PI) and Test Index Error
(E PI), for different pCS values and for different member ship functions (2 and
3). Tab. I depicts the obtained values of PI and E PI for different pCS values,
and Tab. II shows the evolution of the membership function shape depending on
generation of the immune algorithm. Tab. III depicts a performance compari-
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son of the learning results obtained by the GA based FNN model, HCM (Hard
C-Means) clustering algorithm and GA based FNN, and the immune based FNN
model proposed in this paper. Tab. IV illustrates the empirical results for 10 and
100 generations of immune algorithm, respectively.

4.2 Optimal parameter estimation of induction motor
by immune based FNN structure

1) Induction motor model

A squirrel-cage induction machine supplied with a three-phase symmetrical voltage
source can be described using the equivalent circuit shown in Fig. 5. In case the
stator current the input power, the equations of and the electromagnetic torque
for a squirrel induction motor can be deduced from the circuit of Fig. 5 and are
expressed as follows:

I(s) = V
√

C2+D2

A2+B2

P (s) = 3V 2 AC−BD
A2+B2

T (s) = 3V 2 p
ω

R2
feRr/s

A2

A = Rs

(
1 +

Xr

Xm

)
+

(
1 +

Xs

Xm

)
Rs

S

B = Xr + Xs

(
1 +

Xr

Xm

)
−Rs

(
Rr/S

Rr/S

Xm

)
(9)

C = 1 +
Xr

Xm

D =
Rr/S

Xm

Rr =
Rr1Rr2(Rr1 + Rr2) + (Rr1X

2
r2 + Rr2X

2
r1)S

2

(Rr1 + Rr2)2 + (Xr1 + Xr2)2S2

Rr =
Xr1Xr2(Xr1 + Xr2)S2 + R2

r1Xr2 + R2
r2Xr1

(Rr1 + Rr2)2 + (Xr1 + Xr2)2S2

I(s) = V

√
C2 + D2

A2 + B2

P (s) = 3V 2 AC −BD

A2 + B2

θ = [Rr1 Rr2 Xr1 Xr2 Xs Rs Xm]T

In the above equations, Rs, Rr, and Rfe are the stator, rotor, and iron losses, re-
spectively. Also, Xs, Xr, and Xm are the stator leakage reactance, rotor leakage
reactance, and magnetizing reactance. For neglecting the iron losses of a double-
cage motor, one must add a second branch in parallel with the magnetizing reac-
tance.
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2) Optimal parameter selection for motor parameters

In order to determine model parameters from the slip curves of the equivalent
circuit [13], Lima et al. [12] used a nonlinear curve-fitting problem stated as the
solution of the following minimization problem

min
θ∈Ω

= J(θ) =
1
N

N∑

i=1

[yi − y (si, θ)]2 (10)

where J(θ) is the least squares cost function obtained by the sum of the squares of
the differences between the experimental and calculated slip curves, θ is parameter
space depending on the number of parameters to be estimated, yi is the experi-
mental data value collected from machine, y(si, θ)2 is nonlinear function relating
the measured data, the circuit parameters, and the slip, and θ is parameter vector
pertaining variation of the slip. Therefore, in case of double cage, dimension of
parameter vector θ is defined as:

θ = [Rr1, Rr2, Xr1, Xr2, Xs, Rs, Xm]T . (11)

Equation (11) depends on the kind of available experimental data and for ob-
taining a parameter vector that minimizes the quadratic performance index defined
by equation (10). In this case, since one must deal with a nonlinear algorithm to
acquire the desired solution, some numerical problems may arise or a direct ap-
proach would require writing down the normal equations for solving them. The
methods for numerical minimization of performance index (10) might be modified
to update the estimated parameter vector according to a load change. The clonal
selection algorithm suggested in this paper is simulated and compared with genetic
algorithm, recursive algorithm by Lima et al. [12]. Lima et al. [12] used objective
function J1(θ) and object function J2(θ) is introduced for more optimal parameter
selection as follows:

J1(θ) =
1
N

N∑

i=1

[I(si)− I(si, θ)]2+
1
N

N∑

i=1

[P (si)− P (si, θ)]2 (12)

J2(θ) =
1
N

N∑

i=1

[S(i)I(si)− S(i)I(si, θ)]2

+
1
N

N∑

i=1

[S(i)P (si)− S(i)P (si, θ)]2 (13)

Fig. 6 represents the allocation structure of each parameter in the immune system
to obtain optimal parameter estimation. Fig. 23 illustrates the performance of
Clonal selection when compared with the true values. Fig. 24 illustrates the power
curve performance of Clonal selection when compared with the true values and
Fig. 25 depicts the variation of P(s) obtained by Clonal selection (CS-GA), GA,
recursive, and true values. Figs. 26–29 also provide various illustrations showing
the performance of the proposed algorithm. Figs. 27–29 depict that objective
function J2(θ) obtained better satisfactory results than objective function J1(θ)
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using the proposed CS-GA method. As evident from all the illustrations, the
proposed algorithm is efficient and can be used in parameter estimation. Empirical
results obtained are illustrated in Tabs. V-VIII.

Fig. 7 Performance index by differentiation rate of immune algorithm.

Fig. 8 Best fitness value and object function (MF = [2, 2], pCS = 0.2).

Fig. 9 Best fitness value and object function (MF = [2, 2], pCS = 0.5).
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Fig. 10 Comparison of fitness value depending on pCS (MF = [2, 2]).

Fig. 11 Best fitness value and object function (MF = [3, 3], pCS = 0.2).

Fig. 12 Best fitness value and object function (MF = [3, 3], pCS = 0.5).
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Fig. 13 Comparison of fitness value for different values of pCS (MF = [3, 3]).

Fig. 14 Best value of fitness (generations = 100, pCS = 0.2, MF = [2, 2]).

Fig. 15 Best value of fitness (generations = 100, pCS = 0.2, MF = [3, 3]).
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Fig. 16 Best value of fitness (generations = 100, pCS = 0.5, MF = [3, 3]).

Fig. 17 Best value of fitness for different pCS values (MF = [2, 2]).

Fig. 18 Best value of fitness by pCS. (MF = [3, 3]).
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Fig. 19 (a) PI-error for different values of pCS (MF = [2, 2]).

Fig. 19 (b) PI-error for different values of pCS (MF = [2, 2]).

Fig. 20 (a) E PI-error for different values of pCS (MF = [2, 2]).
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Fig. 20 (b) E PI-error for different values of pCS (MF = [2, 2]).

Fig. 21 PI-error for different values of pCS (MF = [3, 3]).

Fig. 22 (a) E PI-error for different values of pCS (MF = [3, 3]).
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Fig. 22 (b) E PI-error for different values of pCS (MF = [3, 3]).

Fig. 23 Variation of I(s) by Clonal selection and true values.

Fig. 24 Power curve to slip by Clonal selection and true values.
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Fig. 25 Variation of I(s) by Clonal selection, GA, recursive, and true values.

Fig. 26 Variation of P(s) by Clonal selection, GA, recursive, and true values.

Fig. 27 Parameter variation to population size for objective function J1(θ).
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Fig. 28 Response to variation of population size for object function J2(θ).

Fig. 29 Comparison of two object function J1(θ), J2(θ).

Model PI E PI MF

FNN model (GA)
0.027 0.298 4
0.026 0.304 6

FNN model (HCM+GA)
0.027 0.294 4
0.032 0.276 6

FNN model (CS-GA)
0.0394 0.274 4
0.0361 0.284 6

Tab. III Comparison of the results by learning methods.

5. Conclusions

Since Fuzzy sets and fuzzy logic can capture the approximate and qualitative as-
pects of human reasoning and decision-making processes, they have been considered
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as effective tools to deal with uncertainties in terms of vagueness, ignorance, and
imprecision. On the other hand, neural networks (NN) appeared as promising
tools (or designing high performance control systems), because they have the po-
tential for dealing with favorable scenarios owing to nonlinear dynamics, drift in
plant parameters, and shifts in operating points. Since then, the fuzzy-neural net-
work (FNN) learning represents one of the most effective algorithms to build such
linguistic models for control system or making decision. However, in many case,
tuning of membership and weighting function often remain as a difficult challenge.

This paper proposed an optimal learning method of fuzzy-neural network by
the artificial immune algorithm. The learning algorithm based on an artificial
immune system is used to design FNN (IM-FNN) and is capable of finding the
initial membership functions and tuning of membership functions. The empirical
results obtained are compared with the results with GA (genetic algorithm based
neural network) and fuzzy-neural network, respectively. Empirical results clearly
illustrate that the proposed learning method obtained more satisfactory results
than other learning schemes.

This paper also introduced the proposed learning structure for an optimal pa-
rameter estimation of the induction motor and the results are compared with the
conventional estimation method such as GA, recursive method.

Gen=10 Gen=100
pCS 2:2 3:3 2:2 3:3

PI E PI PI E PI PI E PI PI E PI
0.2 0.0354 0.2857 0.0354 0.2857 0.040311 0.27306 0.035265 0.28551
0.3 0.0408 0.2729 0.0356 0.2855 0.040598 0.27277
0.4 0.0409 0.2726 0.0359 0.2852 0.040491 0.27288 0.035923 0.28475
0.5 0.0394 0.2742 0.0361 0.2847 0.040452 0.27292 0.035983 0.28469

Tab. IV Comparison of learning methods for 10 and 100 generations.

gen Rr1 Rr2 Xr1 Xr2 Xs Rs Xm

θture 0.0693 0.0132 0.00843 0.1162 0.123 0.00778 4.3
xlb 0.06 0.01 0.007 0.10 0.10 0.006 4
xub 0.08 0.015 0.01 0.13 0.13 0.008 4.5

Tab. V Initial boundary and true values.

Rr1 Rr2 Xr1 Xr2 Xs Rs Xm

Recursive 0.078 0.0129 0.0164 0.121 0.1167 0.0073 4.29
GA 0.063 0.0138 0.010 0.122 0.1260 0.0074 4.21
CS-GA 0.0755 0.0135 0.009 0.1168 0.1195 0.0064 4.34

Tab. VI Comparison of parameter values obtained by each estimation methods.
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Obj func popsize Rr1 Rr2 Xr1 Xr2 Xs Rs Xm

J1(θ)
60 0.0755 0.0135 0.0089 0.1168 0.1195 0.0064 4.34
100 0.0647 0.0132 0.0081 0.1186 0.1253 0.0078 4.32
150 0.0699 0.0115 0.0074 0.1231 0.1207 0.0066 4.42

J2(θ)
60 0.0755 0.0135 0.0091 0.1159 0.1196 0.0068 4.28
100 0.068 0.0149 0.0081 0.1174 0.1242 0.0069 4.47
150 0.0787 0.0136 0.0082 0.1105 0.1188 0.0077 4.30

Tab. VII Resulting parameter estimation for each objective function and popula-
tion sizes.

Obj func gen Rr1 Rr2 Xr1 Xr2 Xs Rs Xm

J1(θ)

100 0.075594 0.013538 0.0089178 0.11685 0.11951 0.0064439 4.3419
150 0.072702 0.01227 0.007611 0.11916 0.1202 0.0069193 4.1168
200 0.072702 0.01227 0.007611 0.11916 0.1202 0.0069193 4.1168
300 0.072702 0.01227 0.007611 0.11916 0.1202 0.0069193 4.1168

J2(θ)

100 0.075521 0.013558 0.0091887 0.11596 0.11962 0.0068187 4.2845
150 0.075521 0.013558 0.0091887 0.11596 0.11962 0.0068187 4.2845
200 0.075495 0.013516 0.0092333 0.11596 0.11961 0.0068168 4.4295
300 0.0755 0.01356 0.0092373 0.11596 0.11963 0.0068197 4.3595
400 0.0755 0.01356 0.0092379 0.11596 0.11963 0.0068197 4.3604

Tab. VIII Resulting parameter values for each object functions and different
generations.
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