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Abstract. Multi-knowledge extraction is significant for many real-world
applications. The nature inspired population-based reduction approaches
are attractive to find multiple reducts in the decision systems, which
could be applied to generate multi-knowledge and to improve decision
accuracy. In this Chapter, we introduce two nature inspired population-
based computational optimization techniques namely Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) for rough set reduc-
tion and multi-knowledge extraction. A Multi-Swarm Synergetic Opti-
mization (MSSO) algorithm is presented for rough set reduction and
multi-knowledge extraction. In the MSSO approach, different individu-
als encodes different reducts. The proposed approach discovers the best
feature combinations in an efficient way to observe the change of pos-
itive region as the particles proceed throughout the search space. We
also attempt to theoretically prove that the multi-swarm synergetic opti-
mization algorithm converges with a probability of 1 towards the global
optimal. The performance of the proposed approach is evaluated and
compared with Standard Particle Swarm Optimization (SPSO) and Ge-
netic Algorithms (GA). Empirical results illustrate that the approach can
be applied for multiple reduct problems and multi-knowledge extraction
very effectively.

1 Introduction

Rough set theory [1,2,3] provides a mathematical tool that can be used for both
feature selection and knowledge discovery. It helps us to find out the minimal
attribute sets called ‘reducts ’ to classify objects without deterioration of clas-
sification quality and induce minimal length decision rules inherent in a given
information system. The idea of reducts has encouraged many researchers in
studying the effectiveness of rough set theory in a number of real world do-
mains, including medicine, pharmacology, control systems, fault-diagnosis, text
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categorization, social sciences, switching circuits, economic/financial prediction,
image processing, and so on [4,5,6,7,8,9,10].

The reduct of an information system is not unique. There may be many subsets
of attributes, which preserve the equivalence class structure (i.e., the knowledge)
expressed in the information system. Although several variants of reduct algo-
rithms are reported in the literature, at the moment, there is no accredited best
heuristic reduct algorithm. So far, it is still an open research area in rough sets
theory.

Particle swarm algorithm is inspired by social behavior patterns of organ-
isms that live and interact within large groups. In particular, it incorporates
swarming behaviors observed in flocks of birds, schools of fish, or swarms of
bees, and even human social behavior, from which the Swarm Intelligence (SI)
paradigm has emerged [11]. The swarm intelligent model helps to find optimal
regions of complex search spaces through interaction of individuals in a pop-
ulation of particles [12,13,14]. As an algorithm, its main strength is its fast
convergence, which compares favorably with many other global optimization
algorithms [15,16]. It has exhibited good performance across a wide range of
applications [17,18,19,20,21]. The particle swarm algorithm is particularly at-
tractive for feature selection as there seems to be no heuristic that can guide
search to the optimal minimal feature subset. Additionally, it can be the case
that particles discover the best feature combinations as they proceed throughout
the search space.

The main focus of this Chapter is to investigate Multi-Swarm Synergetic Op-
timization (MSSO) algorithm and its application in finding multiple reducts for
difficult problems. The rest of the Chapter is organized as follows. Some related
terms and theorems on rough set theory are explained briefly in Section 3. Parti-
cle swarm model is presented and the effects on the change of the neighborhoods
of particles are analyzed in Section 4. The proposed approach based on particle
swarm algorithm is presented in Section 5. In this Section, we describe the MSSO
model in detail and theoretically prove the properties related to the convergence
of the proposed algorithm. Experiment settings, results and discussions are given
in Section 6 and finally conclusions are given in Section 7.

2 Related Research Works

Usually real world objects are the corresponding tuple in some decision tables.
They store a huge quantity of data, which is hard to manage from a compu-
tational point of view. Finding reducts in a large information system is still
an NP-hard problem [22]. The high complexity of this problem has motivated
investigators to apply various approximation techniques to find near-optimal so-
lutions. Many approaches have been proposed for finding reducts, e.g., discerni-
bility matrices, dynamic reducts, and others [23,24]. The heuristic algorithm is
a better choice. Hu et al. [25] proposed a heuristic algorithm using discernibility
matrix. The approach provided a weighting mechanism to rank attributes. Zhong
and Dong [26] presented a wrapper approach using rough sets theory with greedy
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heuristics for feature subset selection. The aim of feature subset selection is to
find out a minimum set of relevant attributes that describe the dataset as well
as the original all attributes do. So finding reduct is similar to feature selection.
Zhong’s algorithm employed the number of consistent instances as heuristics.
Banerjee et al. [27] presented various attempts of using Genetic Algorithms in
order to obtain reducts.

Conventional approaches for knowledge discovery always try to find a good
reduct or to select a set of features [28]. In the knowledge discovery applications,
only the good reduct can be applied to represent knowledge, which is called a
single body of knowledge. In fact, many information systems in the real world
have multiple reducts, and each reduct can be applied to generate a single body
of knowledge. Therefore, multi-knowledge based on multiple reducts has the po-
tential to improve knowledge representation and decision accuracy [29]. However,
it would be exceedingly time-consuming to find multiple reducts in an instance
information system with larger numbers of attributes and instances. In most of
strategies, different reducts are obtained by changing the order of condition at-
tributes and calculating the significance of different condition attribute combina-
tions against decision attribute(s). It is a complex multi-restart processing about
condition attribute increasing or decreasing in quantity. Population-based search
approaches are of great benefits in the multiple reduction problems, because dif-
ferent individual trends to be encoded to different reduct. So it is attractive to
find multiple reducts in the decision systems.

3 Rough Set Reduction

The basic concepts of rough set theory and its philosophy are presented and illus-
trated with examples in [1,2,3,26,28,30,31]. Here, we illustrate only the relevant
basic ideas of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted in 4-tuple by S =
(U, A, V, f), where U is the universe of discourse, a non-empty finite set of N
objects {x1, x2, · · · , xN}. A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A (Va is the value set of the attribute a).

V =
⋃

a∈A

Va

f : U×A → V is the total decision function (also called the information function)
such that f(x, a) ∈ Va for every a ∈ A, x ∈ U . The information system can also
be defined as a decision table by S = (U, C, D, V, f). For the decision table, C
and D are two subsets of attributes. A = {C∪D}, C∩D = ∅, where C is the set
of input features and D is the set of class indices. They are also called condition
and decision attributes, respectively.

Let a ∈ C ∪D, P ⊆ C ∪D. A binary relation IND(P ), called an equivalence
(indiscernibility) relation, is defined as follows:

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)} (1)
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The equivalence relation IND(P ) partitions the set U into disjoint subsets. Let
U/IND(P ) denote the family of all equivalence classes of the relation IND(P ).
For simplicity of notation, U/P will be written instead of U/IND(P ). Such a
partition of the universe is denoted by U/P = {P1, P2, · · · , Pi, · · · }, where Pi is
an equivalence class of P , which is denoted [xi]P . Equivalence classes U/C and
U/D will be called condition and decision classes, respectively.

Lower Approximation: Given a decision table T = (U, C, D, V, f). Let R ⊆ C∪D,
X ⊆ U and U/R = {R1, R2, · · · , Ri, · · · }. The R-lower approximation set of X
is the set of all elements of U which can be with certainty classified as elements
of X , assuming knowledge R. It can be presented formally as

APR−
R(X) =

⋃
{Ri | Ri ∈ U/R, Ri ⊆ X} (2)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

APR−
B(Di) (3)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

B−(Di) (4)

Reduct : Given a decision table T = (U, C, D, V, f). The attribute a ∈ B ⊆ C is
D − dispensable in B, if POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D − indispensable in B. If all attributes a ∈ B are D − indispensable in
B, then B will be called D − independent. A subset of attributes B ⊆ C is
a D − reduct of C, iff POSB(D) = POSC(D) and B is D − independent. It
means that a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. In other
words, attributes that do not belong to a reduct are superfluous with regard
to classification of elements of the universe. Usually, there are many reducts in
an instance information system. Let 2|A| represent all possible attribute subsets
{{a1}, · · · , {a|A|}, {a1, a2}, · · · , {a1, · · · , a|A|}}. Let RED represent the set of
reducts, i.e.,

RED = {B | POSB(D) = POSC(D), POS(B−{a})(D) < POSB(D)} (5)

Multi-knowledge: Given a decision table T = (U, C, D, V, f). Let RED represent
the set of reducts, Let ϕ is a mapping from the condition space to the decision
space. Then multi-knowledge can be defined as follows:

Ψ = {ϕB | B ∈ RED} (6)
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Reduced Positive Universe and Reduced Positive Region: Given a decision ta-
ble T = (U, C, D, V, f). Let U/C = {[u′

1]C , [u
′
2]C , · · · , [u

′
m]C}, Reduced Positive

Universe U
′
can be written as:

U
′
= {u′

1, u
′
2, · · · , u

′
m}. (7)

and
POSC(D) = [u

′
i1 ]C ∪ [u

′
i2 ]C ∪ · · · ∪ [u

′
it
]C . (8)

Where ∀u
′
is
∈ U

′
and |[u′

is
]C/D| = 1(s = 1, 2, · · · , t). Reduced positive universe

can be written as:
U

′
pos = {u′

i1 , u
′
i2 , · · · , u

′
it
}. (9)

and ∀B ⊆ C, reduced positive region

POS
′
B(D) =

⋃

X∈U ′/B∧X⊆U ′
pos∧|X/D|=1

X (10)

where |X/D| represents the cardinality of the set X/D. ∀B ⊆ C, POSB(D) =
POSC(D) if POS

′
B = U

′
pos [31]. It is to be noted that U

′
is the reduced universe,

which usually would reduce significantly the scale of datasets. It provides a more
efficient method to observe the change of positive region when we search the
reducts. We didn’t have to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine whether they are
equal to each other or not. We only calculate U/C, U

′
, U

′
pos, POS

′
B and then

compare POS
′
B with U

′
pos.

4 Particle Swarm Optimization Algorithm

The classical particle swarm model consists of a swarm of particles, which are
initialized with a population of random candidate solutions. They move itera-
tively through the d-dimension problem space to search the new solutions, where
the fitness f can be measured by calculating the number of condition attributes
in the potential reduction solution. Each particle has a position represented by
a position-vector pi (i is the index of the particle), and a velocity represented by
a velocity-vector vi. Each particle remembers its own best position so far in a
vector p#

i , and its j-th dimensional value is p#
ij . The best position-vector among

the swarm so far is then stored in a vector p∗, and its j-th dimensional value is
p∗j . When the particle moves in a state space restricted to zero and one on each
dimension, the change of probability with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t − 1), vij(t − 1), p#
ij(t − 1), p∗j(t − 1)). (11)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (12)
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At each time step, each particle updates its velocity and moves to a new position
according to Eqs.(13) and (14):

vij(t) = wvij(t − 1) + c1r1(p
#
ij(t − 1) − pij(t − 1))

+ c2r2(p∗j (t − 1) − pij(t − 1))
(13)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(14)

Where c1 is a positive constant, called as coefficient of the self-recognition com-
ponent, c2 is a positive constant, called as coefficient of the social component. r1

and r2 are the random numbers in the interval [0,1]. The variable w is called as
the inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. ρ is random number in the closed interval [0,1].
From Eq. (13), a particle decides where to move next, considering its current
state, its own experience, which is the memory of its best past position, and the
experience of its most successful particle in the swarm. Figure 1 illustrates how
the position is reacted on by its velocity. The pseudo-code for particle swarm
optimization algorithm is illustrated in Algorithm 1.
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Fig. 1. Sigmoid function for PSO

The particle swarm algorithm can be described generally as a population of
vectors whose trajectories oscillate around a region which is defined by each
individual’s previous best success and the success of some other particle. Some
previous studies have discussed the trajectory of particles and its convergence
[14,12,32,33]. Bergh and Engelbrecht [33] overviewed the theoretical studies, and
extended these studies to investigate particle trajectories for general swarms to
include the influence of the inertia term. They also provided a formal proof that
each particle converges to a stable point. It has been shown that the trajecto-
ries of the particles oscillate as different sinusoidal waves and converge quickly,
sometimes prematurely. Various methods have been used to identify some other
particle to influence the individual.
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Algorithm 1. Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = 1;
05. Calculate the fitness value of each particle;
06. p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)));
07. For i= 1 to n
08. p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t));
09. For j = 1 to d
10. Update the j-th dimension value of pi and vi

10. according to Eqs.(13),(14),(12);
12. Next j
13. Next i
13. t + +
14. End While.

Eberhart and Kennedy called the two basic methods as “gbest model” and
“lbest model” [11]. In the gbest model, the trajectory for each particle’s search is
influenced by the best point found by any member of the entire population. The
best particle acts as an attractor, pulling all the particles towards it. Eventually
all particles will converge to this position. In the lbest model, particles have
information only of their own and their nearest array neighbors’ best (lbest),
rather than that of the whole swarm. Namely, in Eq. (13), gbest is replaced by
lbest in the model. The lbest model allows each individual to be influenced by
some smaller number of adjacent members of the population array. The particles
selected to be in one subset of the swarm have no direct relationship to the other
particles in the other neighborhood. Typically lbest neighborhoods comprise
exactly two neighbors. When the number of neighbors increases to all but itself
in the lbest model, the case is equivalent to the gbest model. Unfortunately
there is a large computational cost to explore the neighborhood relation in each
iteration when the number of neighbors is too little. Some previous studies has
been shown that gbest model converges quickly on problem solutions but has
a weakness for becoming trapped in local optima, while lbest model converges
slowly on problem solutions but is able to “flow around” local optima, as the
individuals explore different regions [36]. Some related research and development
during the recent years are also reported in [21,34,35,37].

5 Rough Set Reduction Algorithm Based on Swarms

Blackwell and Branke [38] investigated a multi-swarm optimization specifically
designed to work well in dynamic environments. The main idea is to split the pop-
ulation of particles into a set of interacting swarms. These swarms interact locally
by an exclusion parameter and globally through a new anti-convergence operator.
The results illustrated that the multiswarm optimizer significantly outperformed
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the other considered approaches. Niu et al. [39] presented a multi-swarm coop-
erative particle swarm optimizer, inspired by the phenomenon of symbiosis in
natural ecosystems. The approach is based on a master - slave model, in which
a population consists of one master swarm and several slave swarms. The slave
swarms execute a single PSO or its variants independently to maintain the di-
versity of particles, while the master swarm evolves based on its own knowledge
and also the knowledge of the slave swarms. In the simulation studies, several
benchmark functions are performed, and the performances of their algorithms are
compared with the standard PSO (SPSO) to demonstrate the superiority. The
multi swarm approaches let several swarms of particles cooperate to find good
solutions. Usually they have to be designed for specific problems. In this Section,
we design a multi-swarm synergetic optimization algorithm for rough set reduc-
tion and multi-knowledge extraction. The sub-swarms are encoded with different
reducts, which is suitable for searching multiple reducts in decision systems.

5.1 Coding and Evaluation

Given a decision table T = (U, C, D, V, f), the set of condition attributes, C,
consists of m attributes. We set up a search space of m dimensions for the re-
duction problem. Accordingly, each particle’s position is represented as a binary
bit string of length m. Each dimension of the particle’s position maps one con-
dition attribute. The domain for each dimension is limited to 0 or 1. The value
‘1’ means the corresponding attribute is selected while ‘0’ not selected. Each
position can be “decoded” to a potential reduction solution, a subset of C. The
particle’s position is a series of priority levels of the attributes. The sequence
of the attribute will not be changed during the iteration. But after updating
the velocity and position of the particles, the particle’s position may appear
real values such as 0.4, etc. It is meaningless for the reduction. Therefore, we
introduce a discrete particle swarm optimization technique for this reduction
problem. The particles updates its velocity according to Eq. (13), considering
its current state, its own experience, and the experience of its successful particle
in its neighborhood swarm. Each dimension of the particles’ position would be
explored between 0 and 1 through Eqs. (12) and (14).

During the search procedure, each individual is evaluated using the fitness.
According to the definition of rough set reduct, the reduction solution must
ensure the decision ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low as possible. In our
algorithm, we first evaluate whether the potential reduction solution satisfies
POS

′
E = U

′
pos or not (E is the subset of attributes represented by the potential

reduction solution). If it is a feasible solution, we calculate the number of ‘1’
in it. The solution with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the better the fitness of
the individual is. POS

′
E = U

′
pos is used as the criterion of the solution validity.

In the proposed encoding representations, we consider particle’s position en-
coding as the binary representation of an integer. The step size is equal to 1, that
is, the dimension of the search space is then 1. In practice, when the binary string
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is too long for a large scale attribute reduction problem, it is difficult to use it
as an integer. It is time-consuming for each iteration. So we split it into a small
number (say H) of shorter binary strings, each one is seen as an integer. Then
the dimension of the problem is not anymore 1, but H . The swarm algorithm
with two strategies is called as Bi-metrics Binary PSO (Figures 2 and 3).

c12c1 c2 c6 c7 c8 c9

0

c10 c11c5c3 c4

10101010001

Fig. 2. Bi-metrics Binary Representation 1

cmc1 c2 ck ck+1 ck+2

0

cm-2c3

10110001

cm-1

0~7 0~7 0~7

Fig. 3. Bi-metrics Binary Representation 2

5.2 Multi-Swarm Synergetic Model

To employ a multi-swarm, the solution vector is split amongst the different pop-
ulations according to some rule in such a way that the simplest of the schemes
does not allow any overlap between the spaces covered by different populations.
To find a solution to the original problem, representatives from all the popu-
lations are combined to form the potential solution vector, which, in turn, is
passed on the error function. This adds a new dimension to the survival game:
cooperation between different populations [33,40].

As mentioned above, one of the most important applications is to solve multi-
ple reduct problems and multi-knowledge extraction. Those reducts usually share
some common classification characteristics in the information systems. They are
apt to cluster into different groups. Sometime they are also the members of sev-
eral groups at the same time [41]. To match the classification characteristics, we
introduce a multi-swarm search algorithm for them. In the algorithm, all parti-
cles are clustered spontaneously into different sub-swarms of the whole swarm.
Every particle can connect to more than one sub-swarm, and a crossover neigh-
borhood topology is constructed between different sub-swarms. The particles in
the same sub-swarm would carry some similar functions as possible and search
their optimal. Each sub-swarm would approach its appropriate position (solu-
tion), which would be helpful for the whole swarm to keep in a good balance
state. Figure 4 illustrates a multi-swarm topology. In the swarm system, a swarm
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Fig. 4. A multi-swarm topology

with 30 particles is organized into 10 sub-swarms, each sub-swarm consisting of
5 particles. Particles 3 and 13 have the maximum membership level, 3. During
the iteration process, the particle updates its velocity followed by the location
of the best fitness achieved so far by the particle itself and by the location of
the best fitness achieved so far across all its neighbors in all sub-swarms it be-
longs to. The process makes an important influence on the particles’ ergodic and
synergetic performance. The multi-swarm algorithm for the reduction problem
is illustrated as follows:

Step 1. Calculate U
′
, U

′
pos using Eqs. (7) and (9).

Step 2. Initialize the size of the particle swarm n, and other parameters. Ini-
tialize the positions and the velocities for all the particles randomly.
Step 3. Multiple sub-swarms n are organized into a crossover neighborhood
topology. A particle can join more than one sub-swarm. Each particle has the
maximum membership level l, and each sub-swarm accommodates default num-
ber of particles m.
Step 4. Decode the positions and evaluate the fitness for each particles, if
POS

′
E 	= U

′
pos, the fitness is punished as the total number of the condition

attributes, else the fitness is the number of ‘1’ in the position.
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Step 5. Find the best particle in the swarm, and find the best one in each
sub-swarms. If the “global best” of the swarm is improved, noimprove = 0,
otherwise, noimprove = 1. Update velocity and position for each particle at the
iteration t.

5.01 For m = 1 to subs
5.02 p∗ = argminsubsm

i=1 (f(p∗(t − 1)), f(p1(t)),
5.02 f(p2(t)), · · · , f(pi(t)), · · · , f(psubsm(t)));
5.03 For ss = 1 to subsm

5.04 p#
i (t) = argmin(f(p#

i (t − 1)), f(pi(t));
5.05 For d = 1 to D
5.06 Update the d-th dimension value of pi and vi

5.06 according to Eqs.(13), (12), and (14);
5.07 Next d
5.08 Next ss
5.09 Next m

Step 6. If noimprove = 1, goto Step 3, the topology is re-organized. If the end
criterion is not met, goto Step 4. Otherwise, provide the best solution (output),
the fitness.

5.3 Algorithm Analysis

For analyzing the convergence of the multi-swarm algorithm, we first introduce
the definitions and lemmas [42,43,44], and then theoretically prove that the
algorithm converges with a probability 1 or strongly towards the global optimal.

Xu et al. [45] analyzed the search capability of an algebraic crossover through
classifying the individual space of genetic algorithms, which is helpful to com-
prehend the search of genetic algorithms such that premature convergence and
deceptive problems [46] could be avoided. In this Subsection, we also attempt
to theoretically analyze the performance of the multi-swarm algorithm with
crossover neighborhood topology. For the sake of convenience, let crossover op-
erator |c denote the wheeling-round-the-best-particles process.

Consider the problem (P ) as

(P ) = min{f(x) : x ∈ D} (15)

where x = (x1, x2, · · · , xn)T , f(x) : D → R is the objective function and D is
a compact Hausdorff space. Applying our algorithm the problem (P ) may be
transformed to P ′ as

(P ′) =

{
minf(x)
x ∈ Ω = [−s, s]n

(16)

where Ω is the set of feasible solutions of the problem. A swarm is a set, which
consists of some feasible solutions of the problem. Assume S as the encoding
space of D. A neighborhood function is a mapping N : Ω → 2Ω, which defines
for each solution S ∈ Ω a subset N (S) of Ω, called a neighborhood. Each
solution in N (S) is a neighbor of S. A local search algorithm starts off with an
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initial solution and then continually tries to find better solutions by searching
neighborhoods [47]. Most generally said, in swarm algorithms the encoding types
S of particles in the search space D are often represented as strings of a fixed-
length L over an alphabet. Without loss of generality, S can be described as

S = zm × · · · × zm︸ ︷︷ ︸
L

(17)

where zm is a finite field about integer number mod m. Most often, it is the
binary alphabet, i.e. m = 2.

Proposition 1. If k alleles are ‘0’s in the nontrivial ideal Ω, i.e. L − k alleles
are uncertain, then θΩ partitions Ω into 2k disjoint subsets as equivalence classes
corresponding to Holland’s schema theorem [48,49], i.e., each equivalence class
consists of some ‘1’s which k alleles in Ω with ‘0’ are replaced by ‘1’s. Let A ∈
S/θΩ, then there is an minimal element m of A under partial order (S,∨,∧,¬),
such that A = {m ∨ x | x ∈ Ω}.
Theorem 1. Let A, B, C are three equivalence classes on θΩ, where θΩ is the
congruence relation about Ω. ∃ x ∈ A, y ∈ B, and x |c y ∈ C, then C = {x |c
y | x ∈ A, y ∈ B}.
Proof. Firstly, we verify that for any d1, d2 ∈ Ω, if x |c y ∈ C, then (x ∨ d1) |c
(y ∨ d2) ∈ C. In fact,

(x ∨ d1) |c (y ∨ d2) =(x ∨ d1)c ∨ (y ∨ d2)c̄
(xc ∨ yc̄) ∨ (d1c ∨ d2c̄)
(x |c y) ∨ (d1c ∨ d2c̄)

(18)

Obviously, (d1c ∨ d2c̄) ∈ Ω, so (x ∨ d1) |c (y ∨ d2) ≡ (x |c y)( mod θΩ), i.e.
(x ∨ d1) |c (y ∨ d2) ∈ Ω.

Secondly, from Proposition 1, ∃m, n, d3, d4 ∈ Ω of A, B, such that x = m∨d3,
y = n ∨ d4. As a result of analysis in Eq.(18), x |c y ≡ (m |c n)( mod θΩ), i.e.,
m |c n ∈ C.

Finally, we verify that m |c n is a minimal element of C and (m |c n) ∨ d =
(m ∨ d) |c (n ∨ d). As a result of analysis in Eq.(18), if d1 = d2 = d, then
m |c n ∨ d = (m ∨ d) |c (n ∨ d). Therefore m |c n is a minimal element of C.

To conclude, C = {(m |c n) ∨ d | d ∈ Ω} = {x |c y | x ∈ A, y ∈ B}. The
theorem is proven.

Proposition 2. Let A, B are two equivalence classes on θΩ, and there exist
x ∈ A, y ∈ B, such that x |c y ∈ C, then, x |c y makes ergodic search C while x
and y make ergodic search A and B, respectively.

Definition 1 (Convergence in terms of probability). Let ξn a sequence of
random variables, and ξ a random variable, and all of them are defined on the
same probability space. The sequence ξn converges with a probability of ξ if

lim
n→∞P (|ξn − ξ| < ε) = 1 (19)

for every ε > 0.
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Definition 2 (Convergence with a probability of 1). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined on
the same probability space. The sequence ξn converges almost surely or almost
everywhere or with probability of 1 or strongly towards ξ if

P

(
lim

n→∞ ξn = ξ

)
= 1; (20)

or

P

( ∞⋂

n=1

⋃

k≥n

[|ξn − ξ| ≥ ε]
)

= 0 (21)

for every ε > 0.

Theorem 2. Let x∗ is the global optimal solution to the problem (P ′), and
f∗ = f(x∗). Assume that the clubs-based multi-swarm algorithm provides posi-
tion series xi(t) (i = 1, 2, · · · , n) at time t by the iterated procedure. p∗ is the
best position among all the swarms explored so far, i.e.

p∗(t) = arg min
1≤i≤n

(f(p∗(t − 1)), f(pi(t))) (22)

Then,

P

(
lim

t→∞ f(p∗(t)) = f∗
)

= 1 (23)

Proof. Let

D0 = {x ∈ Ω|f(x) − f∗ < ε} (24)
D1 = Ω \ D0

for every ε > 0.
While the different swarm searches their feasible solutions by themselves, as-

sume Δp is the difference of the particle’s position among different club swarms
at the iteration time t. Therefore −s ≤ Δp ≤ s. Rand(−1, 1) is a normal dis-
tributed random number within the interval [-1,1]. According to the update of
the velocity and position by Eqs.(13)∼(14), Δp belongs to the normal distribu-
tion, i.e. Δp ∼ [−s, s]. During the iterated procedure from the time t to t + 1,
let qij denote that x(t) ∈ Di and x(t + 1) ∈ Dj . Accordingly the particles’
positions in the swarm could be classified into four states: q00, q01, q10 and q01.
Obviously q00 + q01 = 1, q10 + q11 = 1. According to Borel-Cantelli Lemma and
Particle State Transference [21], proving by the same methods, q01 = 0; q00 = 1;
q11 ≤ c ∈ (0, 1) and q10 ≥ 1 − c ∈ (0, 1).

For ∀ε > 0, let pk = P{|f(p∗(k)) − f∗| ≥ ε}, then

pk =

{
0 if ∃T ∈ {1, 2, · · · , k}, p∗(T ) ∈ D0

p̄k if p∗(t) /∈ D0, t = 1, 2, · · · , k
(25)
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According to Particle State Transference Lemma,

p̄k = P{p∗(t) /∈ D0, t = 1, 2, · · · , k} = qk
11 ≤ ck. (26)

Hence,
∞∑

k=1

pk ≤
∞∑

k=1

ck =
c

1 − c
< ∞. (27)

According to Borel-Cantelli Lemma,

P

( ∞⋂

t=1

⋃

k≥t

|f(p∗(k)) − f∗| ≥ ε

)
= 0 (28)

As defined in Definition 2, the sequence f(p∗(t)) converges almost surely or
almost everywhere or with probability 1 or strongly towards f∗. The theorem is
proven.

6 Experiment Results and Discussions

The algorithms used for performance comparison were the Standard Particle
Swarm Optimization (SPSO) ([11]) and a Genetic Algorithm (GA) ([50,51]).
These algorithms share many similarities. GA is powerful stochastic global search
and optimization methods, which are also inspired from the nature like the PSO.
Genetic algorithms mimic an evolutionary natural selection process. Generations
of solutions are evaluated according to a fitness value and only those candi-
dates with high fitness values are used to create further solutions via crossover
and mutation procedures. Both methods are valid and efficient methods in
numeric programming and have been employed in various fields due to their
strong convergence properties. Specific parameter settings for the algorithms
are described in Table 1, where D is the dimension of the position, i.e., the
number of condition attributes. Besides the first small scale rough set reduc-
tion problem shown in Table 2, the maximum number of iterations is set as

Table 1. Parameter settings for the algorithms

Algorithm Parameter name Value

Size of the population (even)(int)(10 + 2 ∗ sqrt(D))
GA Probability of crossover 0.8

Probability of mutation 0.01
Swarm size (even)(int)(10 + 2 ∗ sqrt(D))
Self coefficient c1 0.5 + log(2)

PSO(s) Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91
Clamping Coefficient ρ 0.5
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(int)(0.1 ∗ recnum+10 ∗ (nfields−1)) for each trial, where recnum is the num-
ber of records/rows and nfields− 1 is the number of condition attributes. Each
experiment (for each algorithm) was repeated 10 times with different random
seeds. If the standard deviation is larger than 20%, the number of trials were
increased to 20.

To analyze the effectiveness and performance of the considered algorithms,
first we tested a small scale rough set reduction problem shown in Table 2.
In the experiments, the maximum number of iterations was fixed as 10. Each
experiment were repeated 10 times with different random seeds. The results (the
number of reduced attributes) for 10 GA runs were all 2. The results of 10 PSO
runs were also all 2. The optimal result is supposed to be 2. But the reduction
result for 10 GA runs is {2, 3} while the reduction result for 10 PSO runs are
{1, 4} and {2, 3}. Table 3 depicts the reducts for Table 2 (Please also see Figure
5). For the small scale rough set reduction problem, GA has a same result than
PSO. GA only provides one reduct, while PSOs provide one more reduct. There
seems a conflict between the instances 13 and 15. It depends on conflict analysis
and how to explain the knowledge, which will be tackled in future publications.

Table 2. A decision table

Instance c1 c2 c3 c4 d

x1 1 1 1 1 0
x2 2 2 2 1 1
x3 1 1 1 1 0
x4 2 3 2 3 0
x5 2 2 2 1 1
x6 3 1 2 1 0
x7 1 2 3 2 2
x8 2 3 1 2 3
x9 3 1 2 1 1
x10 1 2 3 2 2
x11 3 1 2 1 1
x12 2 3 1 2 3
x13 4 3 4 2 1
x14 1 2 3 2 3
x15 4 3 4 2 2

Further we considered the datasets in Table 4 from AFS1, AiLab2 and UCI3.
Figures 6, 7 and 8 illustrate the performance of the algorithms for lung-cancer,
lymphography and mofn-3-7-10 datasets, respectively. For lung-cancer dataset,
the results (the number of reduced attributes) for 10 GA runs were 10: { 1, 4, 8,
13, 18, 34, 38, 40, 50, 55 } (The number before the colon is the number of con-
dition attributes, the numbers in brackets are attribute index, which represents
1 http://sra.itc.it/research/afs/
2 http://www.ailab.si/orange/datasets.asp
3 http://www.datalab.uci.edu/data/mldb-sgi/data/
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Table 3. A reduction of the data in Table 2

Reduct Instance c1 c2 c3 c4 d

{1, 4}
x1 1 1 0
x2 2 1 1
x4 2 3 0
x6 3 1 0
x7 1 2 2
x8 2 2 3
x9 3 1 1
x13 4 2 1
x14 1 2 3
x15 4 2 2

{2, 3}
x1 1 1 0
x2 2 2 1
x4 3 2 0
x6 1 2 0
x7 2 3 2
x8 3 1 3
x9 1 2 1
x13 3 4 1
x14 2 3 3
x15 3 4 2

Table 4. Datasets used in the experiments

GA PSO MSSO
Dataset Size |C| Class

L R L R L R

lung-cancer 27 56 3 10 1 6 3 6 3
zoo 101 16 7 5 1 5 2 5 3
corral 128 6 2 4 1 4 1 4 1
lymphography 148 18 4 7 1 6 2 6 1
hayes-roth 160 4 3 3 1 3 1 3 1
shuttle-landing-control 253 6 2 6 - 6 - 6 -
soybean-large-test 296 35 15 12 1 10 3 8 3
monks 432 6 2 3 1 3 1 3 1
xd6-test 512 9 2 9 - 9 - 9 -
balance-scale 625 4 3 4 - 4 - 4 -
breast-cancer-wisconsin 683 9 2 4 1 4 2 4 3
mofn-3-7-10 1024 10 2 7 1 7 1 7 1
parity5+5 1024 10 2 5 1 5 1 5 1

a reduction solution); the results of 10 PSO runs were PSO 7: { 1, 6, 12, 27, 29,
35, 41 }, 6: { 2, 3, 12, 22, 25, 56 }, 7: { 2, 3, 8, 12, 22, 31, 49 }; the results of 10
MSSO runs were 6: { 4, 6, 14, 31, 49, 53 }, 6: { 4, 6, 9, 23, 27, 54 }, 6: { 3, 10,
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20, 32, 34, 56 }. For lymphography dataset, the results of 10 GA runs all were
7: { 2, 11, 12, 13, 14, 16, 18 }; the results of 10 PSO runs were PSO 7: { 3, 8, 11,
12, 13, 14, 15 }, 6: { 2, 13, 14, 15, 16, 18 }, 6: { 2, 13, 14, 15, 16, 18 }; the results
of 10 MSSO runs were 6:{ 2, 13, 14, 15, 16, 18 }. For soybean-large-test dataset,
the results of 10 GA runs all were 12: { 1, 3, 4, 5, 6, 7, 13, 15, 16, 22, 32, 35 };
the results of 10 PSO runs were 10:{ 1, 3, 5, 6, 7, 12, 15, 18, 22, 31 }, 10: { 1,
3, 5, 6, 7, 15, 23, 26, 28, 30 }, 10: { 1, 2, 3, 6, 7, 9, 15, 21, 22, 30 }; the results
of 10 MSSO runs were 9: { 1, 3, 5, 6, 7, 15, 22, 30, 34 }, 8: { 1, 3, 4, 6, 7, 10,
15, 22 }, 9: { 1, 3, 5, 6, 7, 13, 22, 25, 31 }. Other results are shown in Table 4,
in which L is the minimum length and R is the number of the obtained reducts.
“-” means that all features cannot be reduced. MSSO usually obtained better
results than GA and PSO, specially for the large scale problems. Although the
three algorithms achieved the same-length results for some datasets, MSSO usu-
ally can provide more reducts for multi-knowledge extraction. It indicates that
MSSO has a better performance than other two algorithms for the larger scale
rough set reduction problem. It is to be noted that PSO usually can obtain more
candidate solutions for the reduction problems.
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Fig. 5. Rule networks based on Table 3
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Fig. 6. Performance of rough set reduction for lung-cancer dataset
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Fig. 7. Performance of rough set reduction for lymphography dataset
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Fig. 8. Performance of rough set reduction for soybean-large-test dataset

7 Conclusions

In this Chapter, we investigated multi-knowledge extraction using particle swarm
optimization and genetic algorithm techniques. The considered approaches dis-
covered the good feature combinations in an efficient way to observe the change
of positive region as the particles explored the search space. The multi-swarm
search approach offer great benefits for multiple reduction problems, because
different individuals encode different reducts. Empirical results indicate that the
proposed approach usually obtained better results than GA and standard PSO,
specially for large scale problems, although its stability need to be improved
in further research. MSSO has better convergence than GA for the larger scale
rough set reduction problem, although MSSO is worst for some small scale rough
set reduction problems. MSSO also can obtain more candidate solutions for the
reduction problems. Empirical results illustrated that the multi-swarm search
approach was an effective approach to solve multi-knowledge extraction.
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