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a b s t r a c t

In his seminal paper published in 2002, Passino pointed out how individual and groups
of bacteria forage for nutrients and how to model it as a distributed optimization process,
which he named the Bacterial Foraging Optimization Algorithm (BFOA). One of the major
operators of BFOA is the reproduction phenomenon of virtual bacteria, each of whichmod-
els one trial solution of the optimization problem. During reproduction, the least healthy
bacteria (with a lower accumulated value of the objective function in one chemotactic life-
time) die and the other healthier bacteria each split into two, which then starts exploring
the search place from the same location. The phenomenon has a direct analogy with the
selectionmechanism of classical evolutionary algorithms. This paper attempts tomodel re-
production as a dynamics and then analyses the stability of the reproductive system very
near to an equilibrium point, which in this case is an isolated optimum. It also finds condi-
tions under which a stable reproduction event can take place, to direct a worse bacterium
towards a better one. Our analysis reveals that a stable reproduction event contributes to
the quick convergence of the bacterial population near optima.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

To tackle several complex search problems of real world, scientists have been looking into nature for years – both as a
model and as a metaphor – for inspiration. Optimization is at the heart of many natural processes like Darwinian evolution,
group behavior of social insects and the foraging strategy of other microbial creatures. Natural selection tends to eliminate
species with poor foraging strategies and favor the propagation of genes of species with successful foraging behavior, as
they are more likely to enjoy reproductive success.
Since a foraging organism or animal takes necessary action to maximize the energy accumulated per unit time spent

for foraging, considering all the constraints presented by its own physiology such as sensing and cognitive capabilities,
environment (e.g. density of prey, risks from predators, physical characteristics of the search space), the natural foraging
strategy can lead to optimization and essentially this idea can be applied to real-world optimization problems [18,29,33].
Based on this conception, Passino proposed an optimization technique known as Bacterial Foraging Optimization Algorithm
(BFOA) [1–3]. Till date, the algorithm has successfully been applied to real-world problems like optimal controller design
[1,2], harmonic estimation [4], transmission loss reduction [5], pattern recognition [6], controller synthesis for active
power filters [7] and power system optimization [8,32]. BFOA is a newly added member in the coveted realm of Swarm
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Intelligence [9,10],which also includes powerful optimization techniques like the Particle SwarmOptimization (PSO) [10,11]
and Ant Colony Optimization (ACO) [12].
One of the major steps of BFOA is the event of reproduction in which the bacterial population is at first sorted in order

of ascending accumulated cost (value of the objective function to be optimized), then the worse half of the population
containing least healthy bacteria is liquidated while all the members of the better half is split into two bacteria which
start exploring the search space from the same location on the fitness landscape [30,31,34,35]. As pointed out by Passino,
this phenomenon finds analogy with the elitist-selection mechanism of the classical evolutionary algorithms (EA) [1,2,13].
Bacteria in the most favorable environment (i.e., near an optima) gain a selective advantage for reproduction through the
cumulative cost.
This paper provides a simple mathematical analysis of the reproduction mechanism in BFOA. We focus our attention on

a simple two-bacterial system working over a one dimensional fitness landscape and try to model the reproduction event
as a dynamics [14]. The resultant dynamics is then represented in a state space, where the displacement and velocity of a
bacterium are assumed to be the state variables. We undertake a stability analysis of the reproduction event, very near to
an isolated equilibrium point by linearizing the non-linear dynamics with Jacobian matrices. The analysis finds the relative
positions of the two bacteria for which only a stable reproduction event can take place for accelerating the convergence.
The rest of the paper is organized as follows. Section 2 provides a comprehensive outline of the BFOA. Section 3 briefly

surveys the existing literature on the researchworks undertaken on andwith BFOA in recent past. In Section 4we derive the
mathematical model of the reproduction operator in BFOA. Then the stability analysis of the obtained dynamics is carried
out in Section 5. Finally Section 6 concludes the article and also uncovers some avenues for future research.

2. The bacterial foraging optimization algorithm

During foraging of the real bacteria, locomotion is achieved by a set of tensile flagella. Flagella help an Escherichia coli
bacterium to tumble or swim, which are two basic operations performed by a bacterium at the time of foraging [1].
When they rotate the flagella in the clockwise direction, each flagellum pulls on the cell. That results in the moving of
flagella independently and finally the bacterium tumbles with lesser number of tumbling whereas in a harmful place it
tumbles frequently to find a nutrient gradient. Moving the flagella in the counterclockwise direction helps the bacterium
to swim at a very fast rate. In the above-mentioned algorithm the bacteria undergoes chemotaxis, where they like to move
towards a nutrient gradient and avoid noxious environment. Generally the bacteria move for a longer distance in a friendly
environment. When they get food in sufficient, they are increased in length and in presence of suitable temperature they
break in themiddle to froman exact replica of itself. This phenomenon inspired Passino to introduce an event of reproduction
in BFOA. Due to the occurrence of sudden environmental changes or attack, the chemotactic progressmay be destroyed and a
group of bacteriamaymove to some other places or some othermay be introduced in the swarm of concern. This constitutes
the event of elimination-dispersal in the real bacterial population, where all the bacteria in a region are killed or a group is
dispersed into a new part of the environment.
Now suppose that we want to find the minimum of J(θ)where θ ∈ <p (i.e. θ is a p-dimensional vector of real numbers),

and we do not have measurements or an analytical description of the gradient ∇J(θ). BFOA mimics the four principal
mechanisms observed in a real bacterial system: chemotaxis, swarming, reproduction, and elimination-dispersal to solve
this non-gradient optimization problem. Belowwe introduce the formal notations used in BFOA literature and then provide
the complete pseudo-code of the BFO algorithm. A more detailed description of the steps of BFOA is out of the scope of this
article and can be found in [1].
Let us define a chemotactic step to be a tumble followed by a tumble or a tumble followed by a run. Let j be the index

for the chemotactic step. Let k be the index for the reproduction step. Let l be the index of the elimination-dispersal event.
Also let
p: Dimension of the search space,
S: Total number of bacteria in the population,
Nc: The number of chemotactic steps,
Ns: The swimming length.
Nre : The number of reproduction steps,
Ned : The number of elimination-dispersal events,
Ped : Elimination-dispersal probability,
C(i): The size of the step taken in the random direction specified by the tumble.
Let P(j, k, l) = {θ i(j, k, l)|i = 1, 2, . . . , S} represent the position of each member in the population of the S bacteria at

the jth chemotactic step, kth reproduction step, and lth elimination-dispersal event. Here, let J(i, j, k, l) denote the cost
associated with the location of the ith bacterium θ i(j, k, l) ∈ <p (sometimes we drop the indices and refer to the ith
bacteriumposition as θ i). Note thatwewill interchangeably refer to J as being a ‘‘cost’’ (using terminology fromoptimization
theory) and as being a nutrient surface (in reference to the biological connections). For actual bacterial populations, S can be
very large (e.g., S = 109), but p = 3. In our computer simulations, we will use much smaller population sizes and will keep
the population size fixed. BFOA, however, allows p > 3 so that we can apply themethod to higher dimensional optimization
problems. Belowwe briefly describe the four prime steps in BFOA.We also provide a pseudo-code of the complete algorithm
thereafter.
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(i) Chemotaxis: This process simulates themovement of an E. coli cell through swimming and tumbling via flagella. Suppose
θ i(j, k, l) represents ith bacterium at jth chemotactic, kth reproductive and lth elimination-dispersal step. C(i) is a scalar
and indicates the size of the step taken in the random direction specified by the tumble (run length unit). Then in
computational chemotaxis, the movement of the bacterium may be represented by

θ i(j+ 1, k, l) = θ i(j, k, l)+ C(i)
∆(i)√

∆T (i)∆(i)
, (1)

where∆ indicates a unit length vector in the random direction.
(ii) Swarming: An interesting group behavior has been observed for several motile species of bacteria including E. coli and
Salmonella typhimurium, where stable spatio-temporal patterns (swarms) are formed in semisolid nutrient medium. A
group of E. coli cells arrange themselves in a traveling ring by moving up the nutrient gradient when placed amidst a
semisolid matrix with a single nutrient chemo-effecter. The cells when stimulated by a high level of succinate, release
an attractant aspartate, which helps them to aggregate into groups and thus move as concentric patterns of swarms
with high bacterial density. The cell to cell signaling in E. coli swarm may be represented by the following function.

Jcc(θ, P(j, k, l)) =
S∑
i=1

Jcc(θ, θ i(j, k, l))

=

S∑
i=1

[
−dattractant exp

(
−wattractant

p∑
m=1

(θm − θ
i
m)
2

)]

+

S∑
i=1

[
hrepellent exp

(
−wrepellent

p∑
m=1

(θm − θ
i
m)
2

)]
, (2)

where Jcc(θ, P(j, k, l)) is the objective function value to be added to the actual objective function (to be minimized) to
present a time varying objective function. The coefficients dattractant, wattractant, hrepellent, andwrepellent control the strength
of the cell to cell signaling. More specifically dattractant is the depth of the attractant released by the cell, wattractant is a
measure of the width of the attractant signal (a quantification of the diffusion rate of the chemical), hrepellent = dattractant
is the height of the repellent effect (a bacterium cell also repels a nearby cell in the sense that it consumes nearby
nutrients and it is not physically possible to have two cells at the same location), andwrepellent is a measure of the width
of the repellent. For a detailed discussion on the function Jcc please see [1].

(ii) Reproduction: The least healthy bacteria eventually die while each of the healthier bacteria (those yielding lower value
of the objective function) asexually split into two bacteria, which are then placed in the same location. This keeps the
swarm size constant.

(iv) Elimination and dispersal: To simulate this phenomenon in BFOA some bacteria are liquidated at random with a very
small probability while the new replacements are randomly initialized over the search space.

Pseudo-code of BFOA
Parameters:
[Step 1] Initialize parameters p, S,Nc,Ns,Nre,Ned, Ped, C(i)(i = 1, 2 . . . S), θ i.
Algorithm:
[Step 2] Elimination-dispersal loop: l = l+ 1
[Step 3] Reproduction loop: k = k+ 1
[Step 4] Chemotaxis loop: j = j+ 1

[a] For i = 1, 2 . . . , S take a chemotactic step for bacterium i as follows.
[b] Compute fitness function, J(i, j, k, l).

Let, J(i, j, k, l) = J(i, j, k, l) + Jcc(θ i(j, k, l), P(j, k, l)) (i.e. add on the cell-to cell attractant–repellent profile to
simulate the swarming behavior) where, Jcc is defined in (2).

[c] Let Jlast = J(i, j, k, l) to save this value since we may find a better cost via a run.
[d] Tumble: generate a random vector ∆(i) ∈ <p with each element ∆m(i),m = 1, 2, . . . , p, being a random number
uniformly distributed in the interval [−1, 1].

[e] Move: Let

θ i(j+ 1, k, l) = θ i(j, k, l)+ C(i)
∆(i)√

∆T (i)∆(i)
.

This results in a step of size C(i) in the direction of the tumble for bacterium i.
[f] Compute J(i, j+ 1, k, l) and let J(i, j+ 1, k, l) = J(i, j, k, l)+ Jcc(θ i(j+ 1, k, l), P(j+ 1, k, l)).
[g] Swim

(i) Letm = 0 (counter for swim length).
(ii) Whilem < Ns (if have not climbed down too long).
• Letm = m+ 1.



Author's personal copy

2130 A. Biswas et al. / Theoretical Computer Science 411 (2010) 2127–2139

• If J(i, j+ 1, k, l) < Jlast (if doing better), let Jlast = J(i, j+ 1, k, l) and let

θ i(j+ 1, k, l) = θ i(j, k, l)+ C(i)
∆(i)√

∆T (i)∆(i)
.

And use this θ i(j+ 1, j, k) to compute the new J(i, j+ 1, k, l) as we did in [f].
• Else, letm = Ns. This is the end of the while statement.

[h] Go to next bacterium (i+ 1) if i 6= S (i.e., go to [b] to process the next bacterium).

[Step 5] If j < Nc , go to step 4. In this case continue chemotaxis since the life of the bacteria is not over.
[Step 6] Reproduction:

[a] For the given k and l, and for each i = 1, 2, . . . , S, let

J ihealth =
Nc+1∑
j=1

J(i, j, k, l)

be the health of the bacterium i (a measure of howmany nutrients it got over its lifetime and how successful it was at
avoiding noxious substances). Sort bacteria and chemotactic parameters C(i) in order of ascending cost Jhealth (higher
cost means lower health).

[b] The Sr bacteria with the highest Jhealth values die and the remaining Sr bacteria with the best values split (this process
is performed by the copies that are made are placed at the same location as their parent).

[Step 7] If k < Nre, go to step 3. In this case, we have not reached the number of specified reproduction steps, so we start
the next generation of the chemotactic loop.
[Step 8] Elimination-dispersal: For i = 1, 2, . . . , S with probability Ped, eliminate and disperse each bacterium (this keeps
the number of bacteria in the population constant). To do this, if a bacterium is eliminated, simply disperse another one to
a random location on the optimization domain. If l < Ned, then go to step 2; otherwise end.

3. Related works on BFOA

Since its advent in 2002, BFOA has attracted the researchers from diverse domains of knowledge. This resulted into a
few variants of the classical algorithm as well as many interesting applications of the same to the real-world optimization
problems. In 2002, Liu and Passino [2] incorporated a new function Jar(θ) in BFOA to represent the environment-dependent
cell-to-cell signaling, such that

Jar(θ) = exp(M − J(θ)).Jcc(θ),

whereM is a tunable parameter and Jcc(θ) is given by (2). For swarming, they considered the minimization of J(i, j, k, l) +
Jar(θ i).
In [15], Tang et al. model the bacterial foraging behaviors in varying environments. Their study focused on the use

of individual based modeling (IbM) method to simulate the activities of bacteria and the evolution of bacterial colonies.
They derived a bacterial chemotaxis algorithm in the same framework and showed that the proposed algorithm can reflect
the bacterial behaviors and population evolution in varying environments, through simulation studies. Li et al. proposed a
modified Bacterial Foraging Algorithm with Varying Population (BFAVP) [16] and applied the same to the Optimal Power
Flow (OPF) problems. Instead of simply describing chemotactic behavior into BFOA as done by Passino [1], BFAVP also
incorporates the mechanisms of bacterial proliferation and quorum sensing, which allow a varying population in each
generation of bacterial foraging process.
Tripathy and Mishra proposed an improved BFO algorithm for simultaneous optimization of the real power losses and

Voltage Stability Limit (VSL) of a mesh power network [8]. In their modified algorithm, firstly, instead of the average value,
the minimum value of all the chemotactic cost functions is retained for deciding the bacterium’s health. This speeds up
the convergence, because in the average scheme described by Passino [1], it may not retain the fittest bacterium for the
subsequent generation. Secondly for swarming, the distances of all the bacteria in a new chemotactic stage are evaluated
from the globally optimal bacterium to these points and not the distances of each bacterium from the rest of the others,
as suggested by Passino [1]. Simulation results indicated the superiority of the proposed approach over classical BFOA for
the multi-objective optimization problem involving the UPFC (Unified Power Flow Controller) location, its series injected
voltage, and the transformer tap positions as the variables. Mishra and Bhende used the modified BFOA to optimize the
coefficients of Proportional plus Integral (PI) controllers for active power filters [7]. The proposed algorithm was found to
outperform a conventional GA with respect to the convergence speed.
Mishra, in [4], proposed a Takagi–Sugeno type fuzzy inference scheme for selecting the optimal chemotactic step-size in

BFOA. The resulting algorithm, referred to as Fuzzy Bacterial Foraging (FBF), was shown to outperform both classical BFOA
and a Genetic Algorithm (GA) when applied to the harmonic estimation problem. However, the performance of the FBF
crucially depends on the choice of the membership function and the fuzzy rule parameters [4] and there is no systematic
method (other than trial and error) to determine these parameters for a given problem. Hence FBF, as presented in [4], may
not be suitable for optimizing any benchmark function in general.
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Fig. 1. A two-bacterium system on an arbitrary fitness landscape.

Hybridization of BFOA with other naturally inspired meta-heuristics has remained an interesting problem for the
researchers. In this context, Kim et al. proposed a hybrid approach involving GA and BFOA for function optimization [3].
The proposed algorithm outperformed both GA and BFOA over a few numerical benchmarks and a practical PID controller
design problem. Biswas et al. proposed a synergism of BFOA with another very popular swarm intelligence algorithm well
knownas the Particle SwarmOptimization (PSO). The newalgorithm, namedby the authors as Bacterial SwarmOptimization
(BSO) [17], was shown to perform in a statistically significantly better way as compared to both of its classical counterparts
over several numerical benchmarks. Dasgupta et al. derived a mathematical model for the chemotactic dynamics of BFOA
and taking a cue from the analysis, they proposed an adaptation rule for the chemotactic step-size of BFO to promote quick
convergence in [18].
Ulagammai et al. applied BFOA to train a Wavelet based Neural Network (WNN) and used the same for identifying the

inherent non-linear characteristics of power system loads [19]. In [20], BFOAwas used for the dynamical resource allocation
in a multiple input/output experimentation platform, which mimics a temperature grid plant and is composed of multiple
sensors and actuators organized in zones. Acharya et al. proposed a BFOA based Independent Component Analysis (ICA) [21]
that aims at finding a linear representation of non-Gaussian data so that the components are statistically independent or
as independent as possible. The proposed scheme yielded better mean square error performance as compared to a CGAICA
(Constrained Genetic Algorithm based ICA). Chatterjee et al. reported an interesting application of BFOA in [22] to improve
the quality of solutions for the extended Kalman Filters (EKFs), such that the EKFs can offer to solve simultaneous localization
and mapping (SLAM) problems for mobile robots and autonomous vehicles.
To the best of our knowledge, none of the existingworks has, however, attempted to develop a full-fledgedmathematical

model of the bacterial foraging strategies for investigating important issues related to convergence, stability and oscillations
of the foraging dynamics near global optima. The present work may be considered as a humble contribution in this context.

4. Analysis of the reproduction step in BFOA

Let us consider a small population of two bacteria that sequentially undergoes the four basic steps of BFOA over a one-
dimensional objective function. The bacteria live in continuous time and at the tth instant its position is given by θ(t). Below
we list a few assumptions that were considered for the sake of gaining mathematical insight.

4.1. Assumptions

(i) The objective function J(θ) is continuous and differentiable at all points in the search space.
(ii) The analysis applies to the regions of the fitness landscape where gradients of the function are small i.e., near to the
optima. The region of fitness landscapes between θ1 and θ2 is monotonous at the time of reproduction.

(iii) During reproduction, two bacteria remain close to each other and one of them must not superpose on another
(i.e. |θ2 − θ1| → 0 may happen due to reproduction but θ2 6= θ1. Let P and Q represent the respective positions of
the two bacteria as shown in Fig. 1). At the start of reproduction θ1 and θ2 remain apart from each other but as the
process progresses they come close to each other gradually.

(iv) The bacterial system lives in continuous time.

4.2. Analytical treatment

In our two bacterial system θ1(t) and θ2(t) represent the position of the two bacteria at time t and J(θ1), J(θ2) denote
the cost function values at those positions respectively. During reproduction, the virtual bacterium with a relatively larger
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Fig. 2. Change of position of the bacteria during reproduction.

value of the cost function (for a minimization problem) is liquidated while the other is split into two. These two offspring
bacteria start moving from the same location. Hence in effect, through reproduction the least healthy bacteria shift towards
the healthier bacteria. Health of a bacterium is measured in terms of the accumulated cost function value, possessed by the
bacteriumuntil that time instant. The accumulated costmay bemathematicallymodeled as

∫ t
0 J(θ1(t))dt . For aminimization

problem, higher accumulated cost represents that a bacterium did not get as many nutrients during its lifetime of foraging
and hence is not as ‘‘healthy’’ and thus unlikely to reproduce. The two-bacterial system working on a single-dimensional
fitness landscape has been depicted in Fig. 1.
To simulate the bacterial reproduction we have to take a decision on which bacterium will split in next generation and

which one will die. This decision may be modeled with the help of the well-known unit step function u(x) (also known as
Heaviside step function [23]), which is defined as,

u(x) = 1; if x > 0
= 0; otherwise. (3)

In what follows, we shall denote θ1(t) and θ2(t) as θ1 and θ2 respectively. Now if we consider that 1θ1 is the infinitesimal
displacement (1θ1 → 0) of the first bacterium in infinitesimal time1t(1t → 0) towards the second bacterium in favorable
condition i.e. when the second is healthier than the first one, then the instantaneous velocity of the first one is given
by, 1θ1

1t . Now when we are trying to model reproduction we assume the instantaneous velocity of the worse bacterium
to be proportional with the distance between the two bacteria, i.e. as they come closer their velocity decreases but this
occurs unless we incorporate the decision making part. So, if the first bacterium is the worse one then,

1θ1

1t
∞(θ2 − θ1)

⇒
1θ1

1t
= k(θ2 − θ1) [where, k is the proportionality constant]

⇒
1θ1

1t
= 1.(θ2 − θ1) = (θ2 − θ1) (4)

[If we assume that k = 1 s−1].

Since we are interested in modeling a dynamics of the reproduction operation, the decision making i.e. whether one of the
bacteria will move towards the other, can not be discrete i.e. it is not possible to check straightaway whether the other
bacterium is at a better position or not (Fig. 2). So a bacterium (suppose θ1) will be checking whether a position situated
at an infinitesimal distance from θ1 is healthier or not and then it will move. The health of first bacterium is given by the
integral of J(θ1) from zero to time t and the same for the differentially placed position is given by the integral of J(θ1+1θ1)
from zero to time t . Then we may model the decision making part with the unit step function in the following way:

1θ1

1t
= u

[∫ t

0
J(θ1)dt −

∫ t

0
J(θ1 +1θ1)dt

]
· (θ2 − θ1). (5)

Similarly, when we consider the second bacterium, we get,

1θ2

1t
= u

[∫ t

0
J(θ2)dt −

∫ t

0
J(θ2 +1θ2)dt

]
· (θ1 − θ2). (6)

In Eq. (5),
∫ t
0 J(θ1)dt represents the health of the first bacterium at the time instant t and

∫ t
0 J(θ1 + 1θ1)dt represents the

health corresponding to (θ1 + 1θ1) at the time instant t . We are going to carry out calculations with the equation for
bacterium 1 only, as the results for other bacterium can be obtained in a similar fashion.
Since we are considering only the monotonous part of any function, so if θ2 is at a better position, then any position, in-

between θ1 and θ2, has a lesser objective function value compared to θ1. So wemay conclude J(θ1+1θ1) is less than J(θ1). In
that case we can imagine that

∫ t
0 J(θ1 +1θ1) is less than

∫ t
0 J(θ1) as t is not too high, the functional part under consideration
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Fig. 3. The unit step and the logistic functions.

is monotonous and change of θ1+dθ1 with respect to t is same as that of θ1. Wewrite the Eq. (5) corresponding to bacterium
1 as,

1θ1

1t
= u

[
−

∫ t

0

J(θ1 +1θ1)− J(θ1)
1t

dt
]
(θ2 − θ1).

[∵ 1t > 0. We know for a positive constant1t , u( x
1t ) = u(x) as x and

x
1t are of same sign and unit step function depends

only upon sign of the argument.]

⇒ Lt
1t→0
1θ1→0

1θ1

1t
= Lt

1t→0
1θ1→0

u
[
−

∫ t

0

J(θ1 +1θ1)− J(θ1)
1t

dt
]
· (θ2 − θ1)

⇒ Lt
1t→0
1θ1→0

1θ1

1t
= Lt

1t→0
1θ1→0

u
[
−

∫ t

0

J(θ1 +1θ1)− J(θ1)
1θ1

1θ1

1t
dt
]
· (θ2 − θ1).

Again, J(θ) is assumed to be continuous and differentiable. Lim1θ→0
J(θ1+1θ1)−J(θ1)

1θ1
is the value of the gradient at that point

and may be denoted by dJ(θ1)dθ1
or G1. So we write,

⇒
dθ1
dt
= u

[
−

∫ t

0

(
dJ
dθ1

dθ1
dt

)
dt
]
· (θ2 − θ1)

[where dθ1dt is the instantaneous velocity of the first bacterium]

⇒ v1 = u
[
−

∫ t

0
G1v1dt

]
· (θ2 − θ1) (7)

[where v1 =
dθ1
dt and G1 is the gradient of J at θ = θ1.]

Now in Eq. (5) we have not yet considered the fact that the event of reproduction is taking place at t = 1 only. So we
must introduce a function of time r(t) = 2 ∗ u(−(t − 1)2) (unit step) in product with the right hand side of Eq. (5). This
provides a sharp impulse of strength 1 unit at time t = 1. Now it is well known that u(x) may be approximated with the
continuous logistic function φ(x) [23,24], where φ(x) = 1

1+e−kx
.

We note that,

u(x) = Lt
k→∞

φ(x) = Lt
k→∞

1
1+ e−kx

. (8)

Fig. 3 illustrates how the logistic function may be used to approximate the unit step function used for decision-making in
reproduction. Note that if we use this approximation of u(x)with φ(x), it follows that for x = 0, u(0) = Ltk→∞φ(x) = 0.5.
In fact this is why (u(−(t − 1)2)) is multiplied with 2 in the above definition of r(t) for getting r(t) = 1 and not 0.5, when
t = 1.
Following this we may write:

r(t) = 2 ∗ u(−(t − 1)2) ≈
2

1+ ek(t−1)2
.
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Fig. 4. Function r(t) and g(t).

For moderately large value of k, since t → 1, we can have |k(t − 1)2| � 1 and thus ek(t−1)
2
≈ 1 + k(t − 1)2. Using this

approximation of the exponential term we may replace the unit step function r(t) with another continuous functiong(t)
where

g(t) =
2

2+ k(t − 1)2
(We can take k = 5)

which is not an impulsive function just at t = 1 rather a continuous function as shown in Fig. 4. Higher value of k will
produce more effective result. Due to the presence of this function we see that v1 (i.e,

dθ1
dt ) will be maximum at t = 1 and

decreases drastically when we move away from t = 1 in both sides.
So Eq. (7) is modified and becomes,

v1 = u
[
−

∫ t

0
G1v1dt

]
(θ2 − θ1) ·

2
2+ k(t − 1)2

. (9)

For ease of calculation we denote the term within the unit step function asM = −
∫ t
0 G1v1dt to obtain,

v1 = u(M)(θ2 − θ1) ·
2

2+ k(t − 1)2
. (10)

Since u(M) = Ltα→∞ 1
1+e−αM

.
We take a smaller value of α for getting into the mathematical analysis (say α = 10). Since, we have the region, under

consideration with very low gradient and the velocity of the particle is low, (so product G1v1 is also small enough), and the
time interval of the integration is not too large (as the time domain under consideration is not large), so we can write, by
expanding the exponential part and neglecting the higher order terms

u(M) =
1

1+ (1− αM)

=
1

2(1− αM/2)
.

Putting this expression in Eq. (10) we get,

v1 =
1

2(1− αM/2)
(θ2 − θ1)

2
2(1+ (k/2)(t − 1)2)

⇒
v1

θ2 − θ1
(1+ (k/2)(t − 1)2) =

1
2

(
1+

αM
2

)
. (11)

[∵ |θ2 − θ1| → 0 but |θ2 − θ1| 6= 0 also ∵ | αM2 | � 1, neglecting higher order terms, (1−
αM
2 )
−1
≈ (1+ αM

2 )]
Now the equation given by (11) is true for all values possible values of t , so we can differentiate both sides of it with

respect to t and get,

⇒
(θ2 − θ1)

dv1
dt − v1(

dθ2
dt −

dθ1
dt )

(θ2 − θ1)2
(1+ (k/2)(t − 1)2)+

v1

θ2 − θ1
k(t − 1) =

1
4
d(αM)
dt

. (12)
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Now, d(α·M)dt =
d(−α

∫ t
0 v1G1dt)
dt = −αv1G1 [by putting the expression for M and applying the Leibniz theorem [22] for

differentiating integrals].
So from (12), we get,

(θ2 − θ1)
dv1
dt − v1(

dθ2
dt −

dθ1
dt )

(θ2 − θ1)2
(1+ (k/2)(t − 1)2)+

v1

θ2 − θ1
k(t − 1) = −

1
4
αv1G1.

Putting dθ1dt = v1 and
dθ2
dt = v2 after some further manipulations (where we need to cancel out (θ2 − θ1), which we can do

as |θ2 − θ1| → 0 towards the end of reproduction but never |θ2 − θ1| 6= 0 according to assumption (iii)), we get,

dv1
dt
= −

v21

θ2 − θ1
− v1

[
k(t − 1)

1+ (k/2)(t − 1)2
+

αG1(θ2 − θ1)
4(1+ (k/2)(t − 1)2)

−
v2

θ2 − θ1

]
⇒
dv1
dt
= −Pv21 − Qv1 (13)

where, P = 1
θ2−θ1

and Q = ( k(t−1)
1+(k/2)(t−1)2

+
αG1(θ2−θ1)

4(1+(k/2)(t−1)2)
−

v2
θ2−θ1

).

4.3. Physical significance of the model

Since the rate of change of velocity of bacterium 1 and 2 are dependent on (θ2−θ1) and (θ1−θ2) respectively, it is evident
that the distance between the two bacteria guides their dynamics. If we assume, θ2 > θ1 and they don’t traverse too long,
the first bacterium is healthier (less accumulated cost) than the second one, when the function is decreasing monotonically
in a minimization problem and also the time rate change of first bacterium is less than that of the second.
So at the time of reproduction, in a two bacteria system, the healthier bacteriumwhen senses that it is in a better position

compared to its fellow bacterium, it hopes that the optimamight be very near so it slows down and its search becomesmore
fine-tuned. This can be comparedwith the real bacterium involved in foraging.Whenever it senses that foodmight be nearby
then it obviously slows down and searches that place thoroughly at cost of some time [25–27].
The second bacteriummoves away from that place with a high acceleration quite naturally getting the information from

the first bacterium that the fitter place is away from its present position. In biological system for grouped foraging when
one member of the group share information from its neighbors it tries to move towards the best position found out by the
neighboring members [26,27]. Thus we see that reproduction was actually included in BFOA in order to facilitate grouped
global search, which is explained from our small analysis.

5. Stability analysis

In this section we undertake the stability analysis of the dynamics underlying the reproduction process (Fig. 5). A few
related terms related to the stability analysis in classical control theory has been explained below.
Definition 5.1. A point Ex = Exe is called an equilibrium state, if the dynamics of the system is given by

dEx
dt
= f (Ex(t))

becomes zero at Ex = Exe for any t i.e. f (Exe(t)) = 0. The equilibrium state is also called equilibrium (stable) point in D-
dimensional hyperspace, when the state Exe has D-components.
Definition 5.2. State variables are defined as the smallest possible subset of system variables that can represent the entire
state of the system at any given time. State variables must be linearly independent; a state variable cannot be a linear
combination of other state variables.

Definition 5.3. In control engineering, a state space representation is a mathematical model of a physical system as a set of
input, output and state variables related by coupled first-order differential equations.

5.1. Stability conditions near equilibrium

Now for gaining further mathematical insight we do some simplifications over Eq. (13). The effect of reproduction is
mostly pronounced around t = 1, so (t − 1) → 0. Thus we can neglect the first expression in Q , which contains (t − 1).
Again we restrict our analysis to regions only where gradient is very low, i.e., G1 → 0. So we can also neglect the second
expression in Q , which contains G1. Thus we get a simplified version of the acceleration of the first bacterium as,

dv1
dt
= −

v21

θ2 − θ1
+

v1v2

θ2 − θ1

⇒
d2θ1
dt2
=

dθ1
dt (v2 −

dθ1
dt )

(θ2 − θ1)
.
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Fig. 5. The region in which our stability analysis is valid.

Now we will be undertaking a state variable analysis, Let us assume, that x1 and x2 are two state variables, where

x1 = θ1 and x2 =
dθ1
dt
.

So we get,

ẋ1 = x2 = f1(x1, x2) (14)

and ẋ2 =
x2(v2 − x2)
(θ2 − x1)

= f2(x1, x2). (15)

This is a nonlinear system and we want to perform the stability analysis of the system in a small region around the
equilibrium point. Let Exe = [x∗1, x

∗

2] be the equilibrium point of the system. So f1(x
∗

1, x
∗

2) = f2(x
∗

1, x
∗

2) = 0.

Now,
dx1
dt
= f1(x1, x2) = f1(x∗1, x

∗

2)+
∂ f1
∂x1

∣∣∣∣ x1 = x∗1
x2 = x∗2

(x1 − x∗1)+
∂ f1
∂x2

∣∣∣∣ x1 = x∗1
x2 = x∗2

(x2 − x∗2). (16)

[by expanding with Taylor’s series around the equilibrium point]

Similarly,
dx2
dt
= f2(x1, x2) = f2(x∗1, x

∗

2)+
∂ f2
∂x1

∣∣∣∣ x1 = x∗1
x2 = x∗2

(x1 − x∗1)+
∂ f2
∂x2

∣∣∣∣ x1 = x∗1
x2 = x∗2

(x2 − x∗2). (17)

Let, p = x1 − x∗1 and q = x2 − x
∗

2

⇒
dp
dt
=
dx1
dt

and
dq
dt
=
dx2
dt
.

From (16),

dp
dt
=
∂ f1
∂x1

∣∣∣∣ x1 = x∗1
x2 = x∗2

p+
∂ f1
∂x2

∣∣∣∣ x1 = x∗1
x2 = x∗2

q [∵ f1(x∗1, x
∗

2) = f2(x
∗

1, x
∗

2) = 0]

dq
dt
=
∂ f2
∂x1

∣∣∣∣ x1 = x∗1
x2 = x∗2

p+
∂ f2
∂x2

∣∣∣∣ x1 = x∗1
x2 = x∗2

q [∵ f1(x∗1, x
∗

2) = f2(x
∗

1, x
∗

2) = 0].

Writing the above equations in a more compact form we get,

[
ṗ
q̇

]
=


∂ f1
dx1

∂ f1
dx2

∂ f2
dx1

∂ f2
dx2


−→x =−→xe

[
p
q

]
, (18)

where J =

[
∂ f1
dx1

∂ f1
dx2

∂ f2
dx1

∂ f2
dx2

]
−→x =−→xe

is the Jacobian matrix.
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Fig. 6. How the velocity and displacement of the first bacterium converge towards the equilibrium (red dot is the equilibrium point). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The eigenvalues of this Jacobian matrix are the poles of the linearized system. For stability of a system the poles must
have negative real part [28]. If f1 and f2 are given by Eqs. (14) and (15), then Eq. (18) becomes as,[

ṗ
q̇

]
=

 0 1
x∗2(v2 − x

∗

2)

(θ2 − x∗1)2
(v2 − 2x∗2)
(θ2 − x∗1)

[p
q

]
, (19)

which is a linear state space representation of the nonlinear reproduction system around the equilibrium point.
Let,M = x∗2(v2−x

∗
2)

(θ2−x∗1)
2 and N =

(v2−2x∗2)
(θ2−x∗1)

, then J matrix looks like,

J =
[
0 1
M N

]
.

Both of the eigenvalues of this matrix are real and they are,

λ1 =
−2x∗2

(θ2 − x∗1)
and λ2 =

2(v2 − x∗2)
(θ2 − x∗1)

.

Now we are to determine when f1(x1, x2) = f2(x1, x2) = 0, i.e., equilibrium values of the two state variables. We find that
at x∗2 = 0 is a solution at which the system is in equilibrium, as then the rate of change of both the state variables becomes
zero. When x∗2 = 0, we have λ1 = 0 and λ2 =

2v2
(θ2−x∗1)

.
For λ2 < 0, (for system stability it is urgently required), we have two options, either (v2 < 0 and θ2 > x∗1) or (v2 > 0

and θ2 < x∗1). But in any case λ1 is zero, which ensures a constant component of the state variables even in the final stage.
So to assure full stability, we must have
Situation 1: (x∗2 = +ε, v2 < 0 and θ2 > x

∗

1) or
Situation 2: (x∗2 = −ε, v2 > 0 and θ2 < x

∗

1).
That means at equilibrium the first bacterium should have an infinitesimal amount of positive or negative velocity to

ensure stability of this reproductive system. In Fig. 6we show twodifferent probable phase trajectories (distance andvelocity
of first bacterium being the two variables) for a stable reproduction. It is evident from this figure that the final velocity is
reduced to zero and the first bacterium comes to rest.
Now situation 1 is true when the second bacterium is in the part of the fitness landscapes where the slope is positive

and the situation 2 is valid where the second one is on negative sloped fitness landscape part [since in the positive sloped
part, velocity v2 can never be positive and in the negative sloped part, velocity v2 can never be negative, as BFOA is a greedy
search]. Case I corresponds to situation I and case II corresponds to situation II.

Case 1: Both bacteria are in the same slope of the fitness landscape (Fig. 7(a) and (b)):
In both the cases θ2 > x∗1 (∼=x1) andwe observe that in 7(a) second bacterium is eventually less fit and as a result of it first

bacterium never undergoes reproduction towards the other one. So the only possible case of reproduction in this scenario
is 7(b).

Case I1: Both bacteria are in the opposite slope of the fitness landscape (Fig. 7(c) and (d)):
In both the cases θ2 < x∗1 (∼=x1 ) and nowwe see that in 7(c) second bacterium is eventually less fit and as a result of it first

bacterium never undergoes reproduction towards the other one. So the only possible case of reproduction in this scenario
is 7(d). So for stable and effective reproductive system bacteriummust lie on fitness landscapes as shown in Fig. 7(b) and (d).



Author's personal copy

2138 A. Biswas et al. / Theoretical Computer Science 411 (2010) 2127–2139

θ1

θ1

θ1

θ1

θ2

θ2

θ2

θ2

a b

c d
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Fig. 8. Stable and unstable situations in reproduction.

5.2. Unstable situation

The position of the second bacteriummust be an equilibrium position with respect to the first bacterium, as the velocity
of the first one must come down to almost zero at this place. If it does not stop here the main objective of reproduction step
of bacterial foraging analysis will be violated. In Fig. 8 we try to depict, how the movement of first bacterium gets disturbed
andmisled for the case of unstable reproduction. The reproduction event was carried in BFOA to have a global search so that
the worst bacterium can be guided towards the better bacterium, but here for instability the basic purpose of reproduction
in BFOA is not fulfilled at all. In the same figure we also show a possible trajectory of the first bacterium towards the second
one for a stable reproduction event.

6. Conclusions

This paper, the first of its kind, presents a mathematical analysis of the reproduction operator of the bacterial foraging
optimization algorithm. First the reproduction step is modeled as a dynamics and then it is represented in a state space
model. The model helps us to gain important insight into the search mechanism of the BFOA. On the basis of a stability
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analysis performed on the derived model, we try to reach at some conclusions regarding the relative positions of the two
bacteria in a one-dimensional two bacterial system, for which a stable reproduction event can take place. In the course of the
bacterial foraging optimization process these relative positions enable us to make the system stable and effective according
to our developed dynamics. We would like to point out that this work takes a significant step towards the mathematical
analysis of BFOA, which appears as an attractive foraging theory based optimization technique of current interest. Future
research should focus on extending the analysis presented here, to a group of bacteria working on a multi-dimensional
fitness landscape and also include effect of the chemotaxis and elimination-dispersal events in the same. Deriving some
control actions on the reproductive system model for eliminating the unstable behavior may be a worthy issue for future
investigation.
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